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Abstract 1 

 2 

The capacity to process information in conceptual form is a fundamental aspect of human 3 

cognition, yet little is known about how this type of information is encoded in the brain. Although 4 

the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging 5 

studies of concept representation consistently implicate a network of heteromodal areas that 6 

seem to support concept retrieval in general rather than knowledge related to any particular 7 

sensory-motor content. We used predictive machine learning on fMRI data to investigate the 8 

hypothesis that the nodes in this “general semantic network” (GSN) encode multimodal 9 

information about the simultaneous activation of different sensory-motor features, functioning 10 

as convergence-divergence zones for distributed concept representation. A computational 11 

model based on five conceptual attributes directly related to sensory-motor processes (sound, 12 

color, shape, manipulability, and visual motion) was used to predict brain activation patterns 13 

associated with individual lexical concepts in a semantic decision task. When the analysis was 14 

restricted to voxels in the GSN, the model was able to identify the activation patterns 15 

corresponding to particular concepts significantly above chance. In contrast, a model based on 16 

five perceptual attributes of the word form performed at chance level. This pattern was reversed 17 

when the analysis was restricted to areas involved in the perceptual analysis of written word 18 

forms. These results indicate that heteromodal areas involved in semantic processing encode 19 

information about the relative importance of different sensory-motor attributes. These high-level 20 

association areas likely encode crossmodal conjunctions representing particular combinations 21 

of sensory-motor content. 22 

23 
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Significance Statement 1 

 2 

The present study employs a simple computational model of word semantics to decode 3 

conceptual information from neural activity in heteromodal cortical areas. The model is based 4 

on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and 5 

manipulability), and encodes the relative importance of each attribute to the meaning of a word. 6 

This is the first demonstration that heteromodal areas involved in semantic processing can 7 

discriminate between different concepts based on sensory-motor information alone. This finding 8 

indicates that the brain represents concepts as multimodal combinations of sensory and motor 9 

representations.10 
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1. Introduction 1 

The capacity to encode and retrieve conceptual information is an essential aspect of human 2 

cognition, but little is known about how these processes are implemented in the brain. 3 

Neuroimaging studies of conceptual processing have implicated areas at various levels of the 4 

cortical hierarchy, including sensory and motor areas (e.g., Hauk et al., 2004; Hsu et al., 2012) 5 

as well as multimodal (Fernandino et al., 2015) and heteromodal regions (Binder et al., 2009). 6 

Binder et al. referred to the latter as a “general semantic network” (GSN) because it responds 7 

more to meaningful input (words and sentences) than to meaningless input (nonwords and 8 

scrambled sentences), regardless of the particular sensory-motor content of the items. The 9 

GSN consists of portions of the inferior parietal lobule (IPL), lateral temporal cortex (LTC), 10 

ventrolateral prefrontal cortex (VLPFC), precuneus/posterior cingulate gyrus (Pc/PCG), 11 

parahippocampal gyrus (PHG), and medial prefrontal cortex (MPFC), all bilaterally activated, 12 

with stronger activations in the left hemisphere. According to embodied models of semantics, 13 

lower-level sensory and motor areas contribute to concept representation by encoding the 14 

sensory-motor features of phenomenal experience that characterize each concept, presumably 15 

derived from the experiences that led to the formation of the concept. However, the role of the 16 

GSN remains obscure. We propose that this network encodes high-level representations of the 17 

co-activation patterns exhibited by lower-level, sensory-motor cortical areas during concept 18 

retrieval, in line with the idea of convergence-divergence zones originally proposed by Damasio 19 

(1989) and further developed by Simmons and Barsalou (2003). Alternatively, it is possible that 20 

the GSN encodes conceptual representations in a qualitatively distinct format that does not rely 21 

on sensory-motor information. The existence of such a disembodied code for concept 22 

representation has been endorsed by some authors (see, for instance, Mahon and Caramazza, 23 

2008). 24 
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We set out to investigate whether the heteromodal cortical areas comprising the GSN 1 

encode sensory-motor information about concrete concepts during word-cued concept retrieval. 2 

We used a forward encoding model based on five sensory-motor attributes of word meaning 3 

(sound, color, visual motion, shape, and manipulability) to decode the distributed fMRI 4 

activation patterns associated with the meanings of 80 common nouns. We anticipated that this 5 

model of word meaning (from here on referred to as the “semantic model”) would successfully 6 

identify individual concrete concepts from neural activity in the GSN. As a control, we predicted 7 

that an alternative model based on five orthographic and phonologic attributes of the word form 8 

(the “word-form model”) would not decode activation patterns in the GSN above chance levels. 9 

As an additional control, we also evaluated both encoding models in a different set of 10 

cortical regions, namely, those involved in the perceptual analysis of written word forms. This 11 

“word form network” (WFN) includes occipital and ventral temporal visual areas, as well as 12 

premotor and supplementary motor areas (e.g., Cohen et al., 2004). Thus, we expected the 13 

decoding accuracy of the two encoding models in these areas to show the opposite pattern 14 

relative to the GSN, that is, successful decoding for the word-form model but not for the 15 

semantic model. 16 

 17 

2. Materials and Methods 18 

2.1. Attribute ratings 19 

 The semantic model was based on five semantic attributes directly related to sensory-20 

motor processes: sound, color, shape, manipulability, and visual motion. Ratings for these 21 

attributes were available for a set of 900 words (see Fernandino et al., 2015, for details). The 22 

ratings reflect the relevance of each attribute to the meaning of the word on a 7-point Likert 23 
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scale ranging from “not at all important” to “very important”. Approximately 30 participants rated 1 

each attribute for each word. 2 

2.2. Data source 3 

We direct the reader to Fernandino et al. (2015) for details on the stimuli and data collection 4 

procedures, which are summarized below. 5 

2.2.1. Participants 6 

Participants were 44 healthy, right-handed, native speakers of English with no history of 7 

neurological or psychiatric disorders (16 females; mean age 28.2, range 19 to 49). They gave 8 

informed consent as approved by the Medical College of Wisconsin Institutional Review Board 9 

and were compensated for participation. 10 

2.2.2. Stimuli 11 

Stimuli consisted of the 900 nouns for which attribute ratings were available (see section 12 

4.1. above) and 300 pseudowords. Six hundred nouns were relatively concrete and 300 were 13 

relatively abstract, as determined by either published imageability ratings or consensus 14 

judgment of the authors. Pseudowords were matched to the words on length, orthographic 15 

neighborhood density, and bigram and trigram metrics.  16 

2.2.3. Task procedure 17 

The stimuli were back-projected on a screen that was viewed by the participant through a 18 

mirror attached to the head coil. Participants performed 1200 trials (900 words, 300 19 

pseudowords), distributed over 10 runs. Each stimulus was presented for 1000 ms and 20 

followed by a fixation cross for a jittered interval of 1-13 s. 21 

Participants performed a speeded semantic decision task (“can it be directly experienced 22 

with the senses?”), and responded by pressing one of two response keys with their right hand. 23 

They were instructed to press the button for "no" in the case of pseudowords. 24 
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2.2.4. FMRI acquisition and preprocessing 1 

Gradient-echo EPI images were collected in 10 runs of 196 volumes each. Twenty-three 2 

participants were scanned on a GE 1.5T Signa MRI scanner (TR = 2000 ms, TE = 40 ms, 21 3 

axial slices, 3.75 x 3.75 x 6.5 mm voxels), and the other 21 were scanned on a GE 3T Excite 4 

MRI scanner (TR = 2000 ms, TE = 25 ms, 40 axial slices, 3 x 3 x 3 mm voxels). T1-weighted 5 

anatomical images were obtained using a 3D SPGR sequence with voxel dimensions of 1 mm 6 

isotropic. 7 

EPI volumes were corrected for slice acquisition time and head motion. They were aligned 8 

to the T1-weighted volume and transformed into Talairach standard space (Talairach & 9 

Tournoux, 1988), resampled at 3 mm isotropic voxels, and smoothed with a 6 mm FWHM 10 

Gaussian kernel. Each voxel time series was rescaled to percent of mean signal level, so that 11 

subsequent regression parameter estimates reflected percent signal change. 12 

2.3. Forward encoding models 13 

The semantic model was designed to predict the activation pattern corresponding to a given 14 

word based on the ratings of the five semantic attributes for that word (see section Attribute 15 

ratings above). The word-form model was designed to predict activation patterns based on 16 

perceptual properties of the word form, regardless of meaning, thus serving as a control for the 17 

semantic model. It was based on five orthographic and phonologic attributes of the word form:  18 

number of letters, number of syllables, orthographic neighborhood density, phonologic 19 

neighborhood density, and bigram frequency. 20 

2.4. Decoding algorithm 21 

For the decoding procedure, we split the 900 word stimuli into a modeling set, consisting of 22 

820 items, and a test set, consisting of 80 items (40 concrete and 40 abstract). Test words 23 

were selected randomly with the constraint that the concrete and abstract subsets were 24 
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matched in word frequency, number of letters, number of phonemes, number of syllables, 1 

orthographic and phonologic neighborhood densities, and bigram frequency (Table 1). 2 

Table 1 here. 3 

The decoding algorithm consisted of four steps:  4 

1. Generation of attribute maps. Activation maps for each attribute in the encoding model 5 

(Attribute Maps, or AMs) were generated for each participant based exclusively on the words in 6 

the modeling set (Figure 1). This was done by including the z-transformed attribute values 7 

(sensory-motor ratings in the case of the semantic model, orthographic and phonologic 8 

measures in the case of the word-form model) as simultaneous predictor variables in a 9 

Generalized Least Squares (GLS) regression. For the semantic model, nuisance regressors 10 

included word length, number of phonemes, number of syllables, word frequency, bigram 11 

frequency, orthographic and phonological neighborhood density, and the participant's RT for 12 

each trial (all z-transformed). For the word-form model, nuisance regressors included the five 13 

sensory-motor ratings of word meaning and the participant's RT for each trial (all z-14 

transformed). Two binary regressors — one coding for "word" events and the other for 15 

"pseudoword" events — were included to account for residual activity associated with early 16 

visual processing of the stimulus, as well as the subsequent motor response. Signal drift was 17 

modeled with linear, second-order, and third-order trends, and residual movement artifacts 18 

were modeled with the estimates of the motion parameters. A group-level AM for each attribute 19 

was created by averaging the individual AMs (beta values) across participants. 20 

 21 

Figure 1 here. 22 

 23 
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2. Computing predicted word maps. For each of the 80 words in the test set, predicted 1 

activation maps (Predicted Maps, PMs) were computed as linear combinations of the AMs, 2 

whereby each AM was weighted by the word's corresponding attribute value (Figure 2A). In the 3 

case of the semantic model, the PM for a given test word corresponded to the hypothetical 4 

activation pattern that would be associated with the meaning of that word if the word's meaning 5 

were completely captured by the five attribute ratings (i.e., sound, color, manipulation, visual 6 

motion, and shape). 7 

3. Generation of observed word maps. From the imaging data, activation maps were 8 

generated for each of the 80 words in the test set, relative to a pseudoword baseline (Observed 9 

Maps, OMs). For each participant, a separate GLS regression was conducted for each of the 10 

80 test words, with the following explanatory variables: a binary regressor coding for the 11 

presentation of the selected test word; a binary regressor coding for presentation of all the non-12 

selected words (i.e., the other 899 words in the stimulus set); a binary regressor coding for 13 

presentation of the pseudowords; five continuous regressors coding for each of the five 14 

attribute values for all non-selected words; and a continuous regressor coding the response 15 

time for each trial. Therefore, the resulting OM for a given test word corresponded to the unique 16 

activation pattern induced by that word. For each test word, a group-level OM was obtained by 17 

averaging the individual OMs (beta values) across participants. 18 

 19 

Figure 2 here. 20 

 21 

4. Testing the PMs against the OMs. The decoding accuracy of the model was evaluated 22 

separately for each word based on the similarity between the PM and its corresponding OM, 23 

relative to the similarity between the PM and all the other OMs (Figure 2B). Similarity was 24 
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defined as the voxel-by-voxel pairwise correlation between maps, and accuracy was defined as 1 

the percentile rank of the correlation strength between the PM and the corresponding OM. This 2 

percentile rank, scaled to a 0 to 1 range, was assigned to the PM as its accuracy score. Thus, 3 

each PM received an accuracy score corresponding to how similar it was to its respective OM 4 

relative to the other 79 OMs, with 0 corresponding to least similar and 1 corresponding to most 5 

similar. For example, if the OM for the word "tomato" were the most highly correlated to the PM 6 

for the same word, that word would receive an accuracy score of 79/79 = 1. If, instead, it were 7 

the second most highly correlated to its respective PM, its accuracy score would be 78/79 = 8 

0.987. The Shapiro-Wilk normality test showed that the model's accuracy scores for the test 9 

words were not normally distributed, so we used non-parametric 95% confidence intervals and 10 

the Wilcoxon signed rank test to verify whether model performance (median decoding accuracy 11 

across the 80 test words) was significantly higher than chance (.5). 12 

2.5. Voxel selection masks 13 

Our hypothesis concerned the role of the GSN in representing sensory-motor information 14 

about concepts. Therefore, we created a mask based on the activation-likelihood estimation 15 

(ALE) meta-analysis by Binder et al. (2009), encompassing the cortical areas that were reliably 16 

associated with "general" semantic processing (Figure 3A). The map from Binder et al. was 17 

thresholded at p < .05 and converted into a binary mask, which was used to select the voxels 18 

included in the decoding analysis. 19 

As a control, the models were also evaluated in a mask corresponding to the WFN, 20 

obtained from the contrast pseudowords > rest in the present data set, thresholded at p < .05 21 

(corrected). This mask included visual, somatosensory, and motor/premotor areas, as well as 22 

the thalamus, and had minimal overlap with the GSN mask (Figure 3A). Since these regions 23 

are more strongly activated during bottom-up perceptual processing than during top-down 24 
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processing (Goebel et al., 1998; O'Craven & Kanwisher, 2000), we expected their activation 1 

patterns to encode information primarily about word form, rather than semantic content. 2 

2.6. Concrete versus abstract words 3 

As mentioned in the Decoding algorithm section, the test set consisted of two matched 4 

subsets, one with 40 concrete words and the other with 40 abstract words. The two subsets 5 

were matched on all lexical attributes, except for concreteness. As shown in Table 1, the 6 

variance of the sensory-motor attribute ratings was much smaller among abstract than among 7 

concrete words, indicating that abstract word meanings contained much less information about 8 

the sensory-motor features included in the semantic model. Thus, if the accuracy of the 9 

semantic model were indeed driven by the sensory-motor aspects of word meaning, decoding 10 

performance should be high for concrete but low for abstract words. 11 

 12 

Figure 3 here. 13 

 14 

3. Results 15 

3.1. Model performance in the GSN mask 16 

Decoding accuracy for the two encoding models in the GSN mask is shown in Figure 3B. 17 

When all 80 test words were pooled together for the decoding procedure, decoding accuracy 18 

was significantly higher than chance for the semantic model (median = .68; 95%CI = [.58, .77]; 19 

V = 2319.5, p = .0004), indicating that the GSN encodes sensory-motor information about 20 

lexical concepts. When concrete and abstract words were decoded separately, decoding was 21 

successful for the concrete (median = .69; 95%CI = [.51, .77]; V = 608, p = .004) but not for the 22 

abstract words (median = .45; 95%CI = [.28, .64]; V = 438.5, p = .35). As expected, decoding 23 

accuracy for the word-form model was not significantly different from chance in the GSN (All 24 
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words: median = .43; 95%CI = [.35, .58]; V = 1480.5, p = .75; Concrete: median = .45; 95%CI = 1 

[.31, .69]; V = 431.5, p = .39; Abstract: median = .43; 95%CI = [.28, .56]; V = 333, p = .85). 2 

Similar results were obtained when we excluded the GSN voxels that overlapped with the 3 

VWFN, with good decoding accuracy for the semantic (All words: median = .65; 95%CI = [.55, 4 

.75]; V = 2215, p = .002; Concrete: median = .67; 95%CI = [.53, .80]; V = 562, p = .02; Abstract: 5 

median = .40; 95%CI = [.25, .54]; V = 404.5, p = .53) but not for the word form model (all p > 6 

.5). 7 

3.2. Model performance in the WFN mask 8 

Decoding accuracy for the two encoding models in the WFN mask is shown in Figure 3C. 9 

Consistent with our hypothesis, the semantic model failed to decode activation patterns in this 10 

network (All words: median = .47; 95%CI = [.38, .67]; V = 1842.5, p = .14; Concrete: median = 11 

.32; 95%CI = [.21, .67]; V = 396, p = .58; Abstract: median = .50; 95%CI = [.44, .67]; V = 419.5, 12 

p = .45), whereas the word-form model was successful (All words: median = .66; 95%CI = [.59, 13 

.72]; V = 2292, p = .0006; Concrete: median = .67; 95%CI = [.59, .77]; V = 554.5, p = .03; 14 

Abstract: median = .64; 95%CI = [.54, .77]; V = 608.5, p = .004). Again, similar results were 15 

obtained when we excluded the WFN voxels that overlapped with the GSN from the analysis, 16 

for both the semantic (all p > .2) and the word form model (All words: median = .69; 95%CI = 17 

[.59, .79]; V = 2280.5, p = .0008; Concrete: median = .65; 95%CI = [.51, .80]; V = 542, p = .04; 18 

Abstract: median = .69; 95%CI = [.59, .77]; V = 637, p = .001). 19 

 20 

4. Discussion 21 

We evaluated two forward encoding models on their capacity to decode word-related 22 

information from fMRI activity patterns. The semantic model was based on five sensory-motor 23 

attributes of word meaning, while the word-form model was based on five orthographic and 24 
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phonologic attributes of the word form. Each model was evaluated in two different sets of 1 

cortical areas: the GSN, a set of highly interconnected heteromodal areas that has been 2 

consistently implicated in semantic processing; and the WFN, involved in the perceptual 3 

analysis of word forms, comprising mainly visual and motor/somatosensory areas. We found 4 

that the semantic model successfully decoded fMRI activation patterns elicited by individual 5 

words in the GSN, but not in the WFN. As expected, decoding of GSN activity was successful 6 

for concrete but not for abstract words when the two sets were analyzed separately. The word-7 

form model was successful in the WFN – for concrete and abstract words alike – but failed to 8 

decode activity in the GSN. This pattern of results strongly indicates that the GSN encodes 9 

information about sensory-motor attributes of concepts.  10 

The GSN was identified by Binder et al. (2009) in an ALE meta-analysis of 120 11 

neuroimaging studies of semantic word processing. It overlaps considerably with the “default 12 

mode network”, a set of cortical areas typically deactivated during attention-demanding tasks 13 

relative to rest (for a review, see Buckner et al., 2008). Resting state connectivity and MRI 14 

tractography studies have shown that the core nodes of the network (IPL, LTC, Pc/PCG, and 15 

MPFC) are strongly interconnected (Greicius et al., 2009; Horn et al., 2014), and graph 16 

theoretical analyses have identified these regions as central connector hubs for more 17 

specialized, modular cortical networks (Hagmann et al., 2008; Sepulcre et al., 2012). Based on 18 

these findings, we have argued that the GSN supports multimodal conceptual representations 19 

by encoding patterns of co-activation across lower-level, modality-specific areas (Fernandino et 20 

al., 2015). The present results show that the GSN can discriminate between individual concrete 21 

concepts based exclusively on sensory-motor information, thus providing substantial support 22 

for this proposal. Although this finding, by itself, does not preclude the existence of a 23 
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disembodied representational code, as proposed by Mahon and Caramazza (2008), it raises 1 

questions about the necessity of such a code and about its possible neural substrates. 2 

The WFN mask included sensory-motor areas that have previously been found to encode 3 

information about word semantics (e.g., Hauk et al., 2004; Hsu et al., 2012; Fernandino et al., 4 

2015). Why, then, did the semantic model fail to decode neural activation in this mask? We 5 

believe the answer lies in the nature of the task. Since perceptual word processing and concept 6 

retrieval took place virtually simultaneously in the present study � the two processes were 7 

modeled as a single event in the GLM estimation of beta values, due to the low temporal 8 

resolution of the BOLD signal � activity in the WFN was driven much more strongly by the 9 

perceptual features of the stimuli (bottom-up activation) than by their semantic attributes (top-10 

down activation), thus greatly reducing the signal-to-noise ratio of the semantic activation 11 

patterns in those areas. Future studies should investigate this issue by dissociating concept 12 

retrieval from complex sensory stimulation.   13 

Finally, we should note that the failure of the semantic model to decode activation patterns 14 

for abstract words does not necessarily imply that concrete and abstract concepts are based on 15 

qualitatively different codes; rather, it could reflect the fact that the relationship between the 16 

meaning of an abstract word and specific features of sensory-motor experience is much more 17 

complex and context-dependent than that of concrete words (Badre & Wagner, 2002; Barsalou 18 

and Wiemer-Hastings, 2005; Hoffman, 2015). Low prediction accuracy was predicted for 19 

abstract words based on the relatively low variance of the sensory-motor ratings across these 20 

words (Table 1). 21 

Our results provide the first demonstration that heteromodal areas involved in semantic 22 

processing can discriminate between individual concepts based on sensory-motor information 23 

alone. They provide strong support for the view that conceptual representations are grounded, 24 
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at least in part, in elementary sensory-motor attributes of phenomenal experience. 1 

Furthermore, they indicate that the neural architecture of these representations is hierarchically 2 

organized, with higher-level heteromodal areas encoding information about the activation 3 

patterns exhibited by lower-level sensory-motor areas � patterns that are, presumably, 4 

established during concept formation and partially reinstated during retrieval. 5 

 6 
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 1 
 Concrete Abstract T test (p) 

Number of letters 5.75 (1.97) 5.75 (2.02) 0.70 

Number of phonemes 4.47 (1.75) 4.87 (1.9) 0.33 

Number of syllables 1.67 (0.8) 2 (1.01) 0.11 

Log Frequency HAL 9.86 (1.31) 9.44 (1.5) 0.18 

Orth. neighborhood 4.87 (5.51) 4.27 (5.81) 0.64 

Phon. neighborhood 9.57 (10.22) 8.72 (11.52) 0.73 

Bigram frequency 1722 (842) 1902 (933) 0.37 

Concreteness 4.81 (0.19) 2.21 (0.65) < .0001 

Sound rating 2.39 (1.47) 0.96 (0.84) < .0001 

Color rating 3.32 (1.07) 0.60 (0.61) < .0001 

Manipulation rating 2.43 (1.42) 0.78 (0.53) < .0001 

Motion rating 2.42 (1.68) 0.81 (0.77) < .0001 

Shape rating 3.90 (1.27) 0.33 (0.26) < .0001 
 2 

Table 1: Lexical and semantic attributes [mean (standard deviation)] for the two subsets of test 3 

words. Concreteness data is from Brysbaert et al. (2014). All other lexical attributes were 4 

obtained from the English Lexicon Project (http://elexicon.wustl.edu). 5 

6 
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Figure 1. Activation images for all the 820 words in the modeling set were combined with their 1 

corresponding attribute ratings in a least squares multiple regression model, resulting in 5 2 

attribute maps. 3 

 4 

Figure 2. A. For each word in the test set (e.g., "coffee"), a predicted map was generated by a 5 

weighted sum of the 5 attribute maps, where each map was weighted by its corresponding 6 

attribute rating for that word. B. The voxel-by-voxel correlations between the predicted map and 7 

each of the 80 observed maps were computed, and the observed maps ranked by correlation 8 

strength. Decoding accuracy was determined from the percentile rank of the observed map for 9 

the corresponding predicted map. 10 

 11 

Figure 3. A. Masks used for voxel selection. B. Decoding accuracy for each model in each of the 12 

two masks. 13 

 14 
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