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While major advances have been made in uncovering the neural processes underlying perceptual re-
presentations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor.
Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and
motor neural systems through which they were acquired, but it is still unclear whether the neural code
for concept representation uses information about sensory-motor features to discriminate between
concepts. In the present study, we investigate this question by asking whether an encoding model based
on five semantic attributes directly related to sensory-motor experience – sound, color, visual motion,
shape, and manipulation – can successfully predict patterns of brain activation elicited by individual
lexical concepts. We collected ratings on the relevance of these five attributes to the meaning of 820
words, and used these ratings as predictors in a multiple regression model of the fMRI signal associated
with the words in a separate group of participants. The five resulting activation maps were then com-
bined by linear summation to predict the distributed activation pattern elicited by a novel set of 80 test
words. The encoding model predicted the activation patterns elicited by the test words significantly
better than chance. As expected, prediction was successful for concrete but not for abstract concepts.
Comparisons between encoding models based on different combinations of attributes indicate that all
five attributes contribute to the representation of concrete concepts. Consistent with embodied theories
of semantics, these results show, for the first time, that the distributed activation pattern associated with
a concept combines information about different sensory-motor attributes according to their respective
relevance. Future research should investigate how additional features of phenomenal experience con-
tribute to the neural representation of conceptual knowledge.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Brain-based theories of concept representation generally begin
with the premise that concepts are learned through a process of
generalization or abstraction from individual experiences. Ex-
periences are comprised of identifiable sensory, motor, spatial,
temporal, affective, and cognitive components, and the relative
contribution of each of these experiential components to concept
formation depends on the particular concept being acquired. For
example, the concept of “thunder” is learned almost entirely
through auditory experiences, whereas the concept of “octopus”
has no connection with audition. Concepts for manipulable objects
09

ino).
such as “pencil” and “spoon” are learned in part through motor
actions performed with those objects, whereas concepts such as
“moon” and “giraffe” have very little (if any) basis in motor ex-
perience. However, most experiences are inherently multimodal in
the sense that they involve simultaneous, covarying information
from multiple sensory-motor modalities. Using a pair of scissors,
for example, typically involves concurrent sensory-motor experi-
ences related to action planning, proprioceptive and tactile feed-
back, and the perception of characteristic shape, motion, and
sound features. Thus, the concept of “scissors” is likely to include
representations of all of these attributes.

Sensory information is processed according to perceptual at-
tributes that can be strictly unimodal (e.g., color) or result from the
combination of two or more sensory modalities (e.g., perception of
object shape often combines visual and tactile information).
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Embodied or “simulation” theories of concept representation
propose that the information abstracted from experience during
concept learning is represented to some degree in the same
modality-specific and multimodal neural systems through which
the learning occurred, and that concept retrieval involves some
degree of activation of this sensory-motor information (Damasio,
1989; Barsalou, 2008; Glenberg and Gallese, 2012; Hoenig et al.,
2011; Kiefer et al., 2007).

Although embodiment theories have garnered extensive em-
pirical support (for reviews, see Fischer and Zwaan, 2008; Mete-
yard and Vigliocco, 2008; Binder and Desai, 2011; Kiefer and
Pulvermüller, 2012; and Meteyard et al., 2012), most studies have
aimed at demonstrating the existence of modality-specific re-
presentational systems (e.g., Warrington and Shallice, 1984;
McCarthy and Warrington, 1988; Farah and McClelland, 1991), or
at implicating a particular modality-specific cortical area in the
representation of concrete concepts (e.g., Martin et al., 1996; Chao
et al., 1999; Hauk et al., 2004; Aziz-Zadeh et al., 2006; Kiefer et al.,
2008; Hsu et al., 2012). One question that remains unanswered is
whether the distributed neural representation of a concept com-
bines information originating from various sensory-motor attri-
butes, as predicted by embodiment theories. In the present study,
we explore this issue by adopting a novel approach to brain acti-
vation data relevant to this question. Instead of searching for lo-
calized activations associated with particular semantic attributes,
we combine information about five different attributes to predict
the activation patterns associated with individual concepts. In
other words, we ask whether information about five sensory-
motor attributes of lexical concepts is sufficient to predict patterns
of brain activation elicited by isolated words. The five attributes
selected for study – color, shape, visual motion, sound, and ma-
nipulation – are each associated with well-studied brain networks
(for a review, see Fernandino et al., 2015). In a prior study, we
obtained salience ratings on each of these attributes for a set of
900 English nouns, and showed that these attribute ratings para-
metrically modulate word-related brain activity in distinct cortical
networks containing both unimodal and multimodal nodes (Fer-
nandino et al., 2015). In the present study, attribute-specific acti-
vation maps, derived from a set of 820 words (the “modeling set”),
were combined into an “encoding model” (Haxby et al., 2014;
Naselaris et al., 2011), which was used to predict word-specific,
whole-brain activation patterns for the 80 remaining words (the
“test set”). The encoding model consisted of a linear combination
of the five attribute maps from the training set, weighted by the
test word's attribute rating values. The predicted activation pat-
terns were then compared to the observed activation patterns for
each test word. Successful prediction of the test word patterns
would provide direct evidence that the overall, distributed neural
representation of a concrete concept encodes information about
the relative relevance of specific aspects of sensory-motor ex-
perience, as rated by an independent group of participants.

Another novel aspect of the present study is the focus on
group-averaged activation patterns. Studies using multivoxel pat-
tern analysis (MVPA) typically evaluate the performance of the
encoding model (or classifier, in the case of pattern classification
studies) separately for each participant, to account for individual
differences in brain morphology and function-structure mapping,
and perform group-level statistical tests on the resulting accuracy
scores (e.g., Mitchell et al., 2008; Huth et al., 2012; Haxby et al.,
2001). Here, we assess whether similarities in the neural code for
concrete concepts across individuals would allow a group-level
encoding model to successfully predict the group-averaged acti-
vation maps corresponding to different concepts. If prediction is
successful, the encoding model can be seen as a first approxima-
tion to a subject-independent neural code for concept re-
presentation, and the predicted activation maps could be
considered as rough neural signatures of the respective concepts.
2. Methods

2.1. Attribute ratings

We focused on five semantic attributes related to sensory-
motor experience: sound, color, manipulation, visual motion, and
shape. Ratings for these attributes were available for a set of 900
words (see Fernandino et al., 2015, for details). The ratings reflect
the salience of each attribute to the meaning of the word on a
7-point Likert scale ranging from “not at all important” to “very
important”. The data set included approximately 30 ratings of each
attribute for each word. Fig. 1 shows mean ratings for six example
words, and Table 1 lists the correlations between the five attribute
ratings across all words.

2.2. fMRI data

All analyses were conducted on the data from Fernandino et al.
(2015). Data collection procedures from that study are summar-
ized below.

2.2.1. Participants
Forty-four healthy, native speakers of English (16 females;

mean age 28.2, range 19–49) with no history of neurological or
psychiatric disorders, participated in the study. All were right-
handed according to the Edinburgh Handedness Inventory (Old-
field, 1971). Participants were compensated for their participation
and gave informed consent in conformity with the protocol ap-
proved by the Medical College of Wisconsin Institutional Review
Board.

2.2.2. Stimuli
The stimuli consisted of the 900 nouns for which attribute

ratings were collected (see Section 2.1. above) and 300 pseudo-
words. All words were relatively familiar (mean CELEX
frequency¼37.4 per million, SD¼118.5), and between 3 and 9 let-
ters in length, with a flat distribution across this length range (i.e.,
126–129 words of each length). Six hundred of the words were
relatively concrete and 300 were relatively abstract, as determined
by either published imageability ratings, which at the time were
available for 748 words (Wilson, 1988; Bird et al., 2001; Clark and
Paivio, 2004), or consensus judgment of the authors. The pseu-
dowords were generated by a computer program (Medler and
Binder, 2005) using constrained trigram statistics (i.e., third-order
approximation to English), followed by exclusion of pseudoho-
mophones. Pseudowords were matched to the words on length,
orthographic neighborhood density, and bigram and trigram me-
trics (Table 2).

2.2.3. Task procedure
The stimuli were back-projected in white Courier font on a

black background screen that was viewed by the participant
through a mirror attached to the head coil. Stimuli subtended an
average horizontal visual angle of approximately 2.5°. In addition
to the 1200 task trials (900 words, 300 pseudowords), 600 passive
fixation events (“þ”) were included to act as a baseline and pro-
vide jittering for the deconvolution analysis, resulting in a total of
1960 stimulus events distributed across 10 runs. On task trials, the
stimulus string was presented for 1000 ms followed by a fixation
cross for 1000 ms; on fixation events, the fixation cross appeared
for 2000 ms. Thus, each stimulus was followed by a varied fixation
interval of 1 s, 3 s, 5 s, etc. The probability distribution of these
fixation intervals was an exponentially decaying function with a



Fig. 1. Examples of words used in the study. Every word had a rating for each of the five semantic features.

Table 1
Correlations between semantic attribute ratings.

Sound Color Manipulation Visual motion

Color 0.12 – – –

Manipulation 0.33 0.31 – –

Visual motion 0.59 0.37 0.25 –

Shape 0.28 0.76 0.58 0.53
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median of 1 s and maximum of 13 s.
Participants were required to decide whether the stimulus

(word or pseudoword) referred to something that can be experi-
enced through the senses (i.e., a “concreteness decision”), and to
respond as quickly as possible by pressing one of two response
keys. They were informed that some of the items would be
pseudowords, and that the answer should be “no” in these cases.
All participants responded with their right hand using the index
and middle fingers. Eprime 1.0 (Psychology Software Tools) was
used for stimulus presentation and response registration.

2.2.4. FMRI acquisition and preprocessing
Gradient-echo EPI images were collected in 10 runs of 196

volumes each. Twenty-three participants were scanned on a GE
1.5T Signa MRI scanner (TR¼2000 ms, TE¼40 ms, 21 axial slices,
3.75�3.75�6.5 mm3 voxels), and the other 21 were scanned on a
GE 3T Excite MRI scanner (TR¼2000 ms, TE¼25 ms, 40 axial
Table 2
Lexical data [mean (standard deviation)] for words and pseudowords used in the study. L
frequency (per million) of the orthographic neighbors. N2_F: averaged frequency (per m
that share the same constrained bigrams. N3_F: averaged frequency (per million) of the
same constrained trigrams.

Length Orth Orth_F

Words 5.99 (1.99) 4.12 (5.75) 54.4 (271)
Pseudowords 5.99 (1.99) 4.26 (5.75) 43.4 (93)
T test (p) 0.98 0.71 0.49
slices, 3�3�3 mm3 voxels). T1-weighted anatomical images
were obtained using a 3D spoiled gradient-echo sequence with
voxel dimensions of 1�1�1 mm3.

Preprocessing and statistical analysis of fMRI data were done
with the AFNI software package (Cox, 1996). EPI volumes were
corrected for slice acquisition time and for head motion. Func-
tional volumes were then aligned to the T1-weighted anatomical
volume and transformed into Talairach standard space (Talairach
and Tournoux, 1988), resampled at 3 mm isotropic voxels, and
smoothed with a 6 mm FWHM Gaussian kernel. Each voxel time
series was then rescaled to percent of mean signal level, so that
subsequent regression parameter estimates reflect percent signal
change.

2.3. Prediction analyses

For the prediction analyses, the 900 word stimuli were split
into two groups: a modeling set, consisting of 820 items, and a test
set, consisting of 80 items (40 concrete and 40 abstract). The 80
test words were selected randomly with the constraint that the
concrete and abstract subsets were matched in word frequency,
number of letters, number of phonemes, number of syllables, or-
thographic and phonological neighborhood densities, and bigram
frequency (Table 3).

The prediction analysis was conducted in four steps. First, for
each participant, we generated activation maps for each of the five
ength: number of letters. Orth: number of orthographic neighbors. Orth_F: averaged
illion) of the constrained bigrams for the wordform. N2_C: number of wordforms
constrained trigrams for the wordform. N3_C: number of wordforms that share the

N2_F N2_C N3_F N3_C

964 (1087) 68.2 (62.6) 151 (240) 12.4 (19.5)
976 (759) 68.7 (49.1) 141 (176) 11.4 (10.4)
0.86 0.91 0.51 0.40



Table 3
Lexical and semantic attributes [mean (standard deviation)] for the two subsets of
test words. Concreteness data is from Brysbaert et al. (2014). All other lexical
attributes were obtained from the English Lexicon Project (Balota et al., 2007;
http://elexicon.wustl.edu).

Concrete Abstract T test (p)

Number of letters 5.75 (1.97) 5.75 (2.02) 0.70
Number of phonemes 4.47 (1.75) 4.87 (1.9) 0.33
Number of syllables 1.67 (0.8) 2 (1.01) 0.11
Log frequency HAL 9.86 (1.31) 9.44 (1.5) 0.18
Orth. neighborhood 4.87 (5.51) 4.27 (5.81) 0.64
Phon. neighborhood 9.57 (10.22) 8.72 (11.52) 0.73
Bigram frequency 1722 (842) 1902 (933) 0.37
Concreteness 4.81 (0.19) 2.21 (0.65) o .0001
Sound rating 2.39 (1.47) 0.96 (0.84) o .0001
Color rating 3.32 (1.07) 0.60 (0.61) o .0001
Manipulation rating 2.43 (1.42) 0.78 (0.53) o .0001
Motion rating 2.42 (1.68) 0.81 (0.77) o .0001
Shape rating 3.90 (1.27) 0.33 (0.26) o .0001
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attributes of word meaning (attribute maps, or AMs) based on the
words in the modeling set (Fig. 2A). This was done by converting
their attribute ratings into z-scores and including them as si-
multaneous predictor variables in a Generalized Least Squares
(GLS) regression model. Word length, number of phonemes,
number of syllables, word frequency, bigram frequency, ortho-
graphic and phonological neighborhood density, and the partici-
pant's z-transformed RT for each trial were included as nuisance
regressors. Two binary regressors were also added to account for
activity associated with early visual, orthographic, and phonolo-
gical processing of the stimulus, as well as the subsequent motor
response: one regressor coded for “word” events and the other for
“pseudoword” events. Noise was modeled with linear, second-or-
der, and third-order trends, as well as with the estimates of the
motion parameters. For each attribute, a group-level AM was ob-
tained by averaging the individual AMs (beta values) across
participants.

Second, we computed predicted activation maps (predicted
maps, PMs), for each of the 80 words in the test set, as linear
combinations of the AMs, whereby each AM was weighted by the
z-score of the word's corresponding attribute rating (Fig. 2B). The
PM for a given test word corresponds to the hypothetical activa-
tion pattern that would be associated with the meaning of that
word if the word's meaning were completely captured by the five
attribute ratings (i.e., sound, color, manipulation, visual motion,
and shape).

Third, we generated activation maps for each of the 80 words in
the test set, relative to a pseudoword baseline (observed maps,
OMs; Fig. 2C). For each participant, a separate GLS regression was
done for each of the 80 test words, with the following explanatory
variables: (1) a binary regressor coding for the presentation of the
selected test word; (2) a binary regressor coding for presentation
of all the non-selected words (i.e., the other 899 words in the
stimulus set); (3) a binary regressor coding for presentation of the
pseudowords; (4) five continuous regressors coding for each of the
five semantic attribute ratings for all non-selected words; and (5) a
continuous regressor coding the response time for each trial. The
resulting OM for a given test word, thus, revealed the unique ac-
tivation pattern elicited by that word. For each test word, a group-
level OM was obtained by averaging the individual OMs (beta
values) across all participants.

Finally, we assessed the accuracy of the PMs by calculating the
voxel-by-voxel pairwise correlation between each PM and each of
the 80 OMs (Fig. 2D). For each PM, we then rank-ordered all the
OMs according to correlation strength and noted the percentile
rank of the OM for the corresponding target word (Fig. 2E). This
percentile rank, scaled to a 0–1 range, was assigned to the PM as
its accuracy score. Thus, each PM was assigned an accuracy score
corresponding to how similar it was to its respective OM relative
to the other 79 OMs, with 0 corresponding to least similar and
1 corresponding to most similar. For instance, if the OM for the
word “coffee” were the most highly correlated (among the 80
OMs) to the PM for the same word, that word would receive an
accuracy score of 79/79¼1. If, instead, it were the second most
highly correlated to its respective PM, its accuracy score would be
78/79¼0.987. We then conducted a one-tailed Wilcoxon signed
rank test to verify whether the median prediction accuracy across
all 80 words was significantly higher than chance (0.5).

In principle, any type of information about the stimuli that
correlates with the attribute ratings could contribute to the pre-
diction success of our encoding model. Thus, it is important to rule
out other factors (e.g., word length) as possible drivers of predic-
tion accuracy. For this purpose, the test set consisted of two
matched subsets, one with 40 concrete words and the other with
40 abstract words. The two subsets were matched on all lexical
attributes, except for concreteness (i.e., the extent to which they
referred to sensory-motor experiences). As Table 3 shows, inter-
stimulus variance for the attribute ratings was much smaller
among abstract than among concrete words. In other words, ab-
stract words contained much less sensory-motor information. If
prediction accuracy were indeed driven by the sensory-motor
aspects of word meaning, performance should be higher for con-
crete than for abstract words. Finally, we also investigated the
relative contribution of each of the five attributes to prediction
accuracy (for concrete words) by evaluating encoding models
based on all possible combinations of these attributes.

Voxel selection is an important step in MVPA, since the inclu-
sion of non-informative voxels can severely degrade the model's
performance (Cox and Savoy, 2003; Mitchell et al., 2004). We ex-
cluded non-brain voxels and voxels with low signal-to-noise ratio
(SNR) by confining the analysis to a mask where the temporal SNR
was higher than an arbitrary threshold (tSNR450). The resulting
mask encompassed most of the brain, except for the regions that
are typically affected by signal dropout (portions of the inferior
temporal and orbitofrontal cortex).
3. Results

3.1. Analyses including all five attributes

When all 80 words were analyzed together, activation patterns
were predicted significantly better than chance (median¼0.63,
95% CI [0.58, 0.77], V¼2413.5, p¼0.00007), showing that in-
formation about these five aspects of sensory-motor experience is
encoded in the activation pattern elicited by lexical concepts
(Fig. 3). Since concrete concepts contain more sensory-motor in-
formation than abstract concepts (as reflected in the larger var-
iance of attribute ratings for the former; Table 3), we expected that
prediction accuracy would be driven mainly by the concrete words
in the test set. As shown in Fig. 3, when analyzed separately,
concrete words were predicted significantly better than chance
(median¼0.67, 95% CI [0.55, 0.81], V¼610, p¼0.0036), while ab-
stract words were not (median¼0.50, 95% CI [0.29, 0.63],
V¼360.5, p¼0.75). This was further confirmed by a Wilcoxon rank
sum test, which showed that prediction was significantly higher
for concrete than for abstract words (W¼1048, p¼0.0086). Since
concrete and abstract words were closely matched on non-se-
mantic lexical properties of the stimuli (Table 3), this result con-
firms that prediction accuracy was driven by semantic information
alone.

http://elexicon.wustl.edu


Fig. 2. Prediction analysis. (A) Group-level attribute maps were generated from the 820-word modeling set through least squares multiple regression. (B) In this example,
the predicted map for “coffee” is generated by multiplying each attribute map by the z score of the corresponding attribute rating for that word and adding them together.
(C) The voxel-by-voxel correlations between the predicted map for “coffee” and each of the 80 group-level observed maps are computed. (D) The observed maps are ranked
by correlation strength, and prediction accuracy is determined from the percentile rank of the observed map for “coffee”. Steps B–D are repeated for each word in the test set.
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Fig. 3. Median prediction accuracy when all 5 attributes were included in the
analysis. Error bars represent the 95% confidence interval. *po .05; **po .005;
***po .0005.
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3.2. Analyses on subsets of attributes

Since the predictive power of the model was specific to con-
crete words, we focused on this subset in the ensuing analyses.
Prediction accuracies for models based on all possible combina-
tions of the 5 attributes are shown in Fig. 4. When prediction maps
were based on only one attribute, prediction accuracy across the
40 concrete words was indistinguishable from chance for all at-
tributes, with no significant differences between them (p¼0.84,
one-way Kruskal–Wallis rank sum test), and with a mean (across
attributes) of 0.53. When prediction was based on two attributes
at a time, prediction accuracies were above chance level for most
attribute dyads, except for Sound & Motion and for Manipulation &
Motion, but with no significant differences between attribute pairs
(p¼0.66). Mean accuracy across pairs was 0.56. With three attri-
butes included at a time, activation patterns were predicted better
than chance for 5 out of the 10 triads, again with no significant
differences between them (p¼0.40), and with a mean accuracy of
0.60. Finally, when predictions were based on four attributes at a
time, prediction was successful for all but one combination of at-
tributes (the one in which Motion was left out). Mean prediction
accuracy was 0.65, with no significant differences between the
models (p¼0.49). These results show that prediction accuracy
increased as a function of the number of attributes included in the
model (Fig. 5), but revealed no significant differences in the re-
lative contribution of individual attributes.
4. Discussion

An encoding model based on the relative relevance of five
sensory-motor attributes – sound, color, visual motion, manip-
ulation and shape – to conceptual content was able to predict the
distributed fMRI activation pattern elicited by concrete words.
Prediction accuracy for a matched set of abstract words, on the
other hand, was at chance level, confirming that prediction success
for the concrete words was based solely on semantic information.
These results show that the neural code for concept representation
includes information about sensory-motor attributes. Finally,
while prediction accuracy increased linearly with the number of
sensory-motor attributes included in the model, we found no
significant differences between the relative contributions of the
attributes, suggesting that all of them contributed to prediction
success.

These results make three main contributions to the existing
literature on concept representation. First, while many previous
studies focused on the important issue of whether activation in
modal sensory or motor systems is modulated by sensory or motor
conceptual content, they did not focus on the multimodal nature
of the concept representation system. The present study offers the
first evidence that the neural code for concept representation in-
cludes information about the relative relevance of specific aspects
of sensory-motor experience, involving different modalities. Sec-
ond, the present study establishes a novel method that can be
used to assess the contribution of other attributes (sensory, motor,
affective, temporal, spatial, social, etc.) to the neural representa-
tion of conceptual knowledge. Finally, our results show that the
neural code for concepts is consistent enough across participants
to allow successful prediction of activation patterns at the group
level. This finding is important in the context of previous studies
that have shown that the neural representation of a lexical concept
is measurably affected by the individual's unique sensory-motor
experiences during concept acquisition (Hoenig et al., 2011; Kiefer
et al., 2007; Weisberg et al., 2007). These studies indicate that a
lexical concept is not identically represented across different
brains, but reflects each participant's unique life history. The re-
lative extent of this inter-subject variability, however, remains an
open issue. Is it large enough that inter-subject averaging would
lead to complete loss of information? Our results indicate that,
despite individual differences, the neural activation pattern asso-
ciated with a lexical concept displays a certain degree of in-
variance across participants, making it possible to discriminate
between concepts in group-averaged data. The generalizability of
our results is further strengthened by the fact that the attribute
ratings were derived from a separate group of participants.

The present approach to relating neural activation patterns to
word meanings shares some similarities with previous studies on
this topic but also differs in important ways. Mitchell et al. (2008)
introduced the approach of predicting neural activation patterns
for concepts using a linear combination of basis images weighted
by semantic feature values. They showed that a set of 25 semantic
features related to sensory-motor experience could predict neural
activation associated with concrete concepts, in individual parti-
cipants, with a mean accuracy of 0.77 (chance level¼0.5). One
major difference from the present study is that the semantic fea-
tures of the test concepts were determined by text co-occurrence
rather than explicit attribute judgments. For example, one se-
mantic feature was the degree to which a test concept co-occurs
with the word “eat” in a large text corpus. The features were thus
defined by measuring co-occurrence with 25 words, primarily
verbs: see, hear, listen, taste, smell, eat, touch, rub, lift, manipulate,
run, push, fill, move, ride, say, fear, open, approach, near, enter,
drive, wear, break, clean. Although some of these have strong re-
lations to modality-specific neural processing systems (e.g., see,
hear, listen, taste, smell, touch, manipulate, run, fear), many in-
volve multiple sensory-motor attributes from various modalities
(eat, rub, lift, fill, move, push, say, open, approach, enter) or are
ambiguous as to experiential content (ride, drive, wear, break,
clean). Thus the relationships between these features and parti-
cular neural processing systems are somewhat unclear. The co-
occurrence method adds to this uncertainty in two ways. First, it is
debatable whether co-occurrence with a set of verbs adequately
captures the targeted content of a concept, since other verbs are
available in most cases that could be used to convey the same



Fig. 4. Median prediction accuracy for concrete words, for different subsets of attributes. Error bars represent the 95% confidence interval.
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Fig. 5. Mean prediction accuracy for concrete words by number of attributes in-
cluded in the model.
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general meaning (e.g., “observe,” “watch,” “look,” and “view” in-
stead of “see”). Second, many of the words selected as co-occur-
rence targets have multiple meanings, some of which may be
unrelated to the targeted neural modality. The target verb “run,”
for example, was likely selected to identify content related to
lower limb motor actions, but usages such as “the car is running”
(“car” was one of the test concepts) are unrelated to this targeted
content.

The present approach attempts to remove such ambiguity by
deriving the semantic representation of concepts directly from
human judgments about attribute salience. Rather than inferring
semantic content indirectly, the rating method asks human ob-
servers to make explicit links between concepts and experi-
menter-defined attributes. The limitation of this approach is that
human judgments are inevitably subjective and open to error, al-
though averaging responses from a sample of observers after re-
moval of intra-class outliers mitigates this problem to some de-
gree. Hoffman and Lambon Ralph (2013) provided evidence sup-
porting the validity of such an approach. They obtained salience
ratings on 8 attributes – visual form, observed motion, color,
touch, sound, taste, smell, and performed actions – for 160 object
concepts. These attribute representations predicted lexical pro-
cessing time, and did so more accurately than traditional feature-
based representations. It remains an open question, however,
whether attribute-based representations derived from human
judgments are more or less accurate than text-based co-occur-
rence measures at predicting neural activity patterns (for a review
of the differences between approaches to word semantics based
on explicit sensory-motor features and those based on statistical
distributions of word co-occurrences – and how they can be in-
tegrated – see Andrews et al., 2014).

In a related study, Huth et al. (2012) investigated the cortical
representation of semantic categories based on BOLD responses to
natural movies. In that study, participants watched movie clips
displaying a variety of objects, people, animals and actions, which
were coded in the fMRI regression model using 1705 taxonomic
category labels from the WordNet lexicon. The authors then
identified four significant factors underlying the model fit using
principal components analysis. The maps based on these four
components showed a degree of correspondence between
categorical structure and cortical representation (i.e., similar ca-
tegories tended to be represented by similar sets of voxels) in in-
dividual participants. However, the underlying factors in such an
analysis must be interpreted post-hoc, and the resulting maps offer
little insight into how those factors are related to other known
functions of the corresponding cortical areas. Our approach fo-
cused instead on five sensory-motor dimensions involved in con-
cept acquisition (at least for concrete concepts), and investigated
the extent to which these dimensions capture the neural re-
presentation of lexical concepts. This approach offers a re-
presentational space for the description of concepts in which the
dimensions can be related directly to known functions of the
brain.

Perhaps the most important difference between our study and
those of Mitchell et al. (2008) and Huth et al. (2012) is that con-
cepts in our study were cued solely by word stimuli, with no
pictorial representations of the concepts themselves. Mitchell
et al., on the other hand, presented word-picture pairs as stimuli
(e.g., the word “airplane” accompanied by a line drawing of an
airplane), while Huth et al. presented movie clips. The use of
pictorial stimuli in these studies leaves open the possibility that
the elicited activation patterns in part reflected perceptual rather
than purely semantic aspects of the objects (Haxby et al., 2001,
2011; Spiridon and Kanwisher, 2002; Cox and Savoy, 2003; Krie-
geskorte et al., 2008). Since similar categories of objects tend to
share similar visual properties, similarity in cortical representation
could have been driven to a large extent by perceptual similarity.
The present study avoided this confound by relying exclusively on
word stimuli, thus ensuring that any sensory-related information
contributing to prediction accuracy originated from the concept
representation itself, rather than the physical stimulus used to cue
it. This was further confirmed by the contrasting results obtained
for concrete and abstract words.

A final difference between studies is that our analysis was done
on group-averaged activation maps, and thus relied entirely on
concept-related neural activation patterns that are common across
individuals. This approach offers the potential of predicting a
participant's activation pattern for a concept based solely on at-
tribute maps generated from other participants. However, the
averaging procedure certainly results in loss of information about
inter-subject variability, and this may explain in part why the ac-
curacy levels obtained in the present study are generally lower
than those obtained by Mitchell et al. (2008). Another factor that
probably contributed to the difference in accuracy was the number
of semantic features used to generate the predictions (5 in the
present study, 25 in Mitchell et al.). Presumably, increasing the
number of attributes in our analysis would lead to higher predic-
tion accuracies, provided the extra attributes capture significant
aspects of the concept's neural representation.

One potential criticism of the present study is that the task may
have induced participants to engage in mental imagery, and that
the activation patterns may thus reflect perceptual, rather than
conceptual, representations. This argument is based on the as-
sumption that mental imagery and concept retrieval constitute
categorically distinct kinds of phenomena, such that imagery en-
gages perceptual representations while conceptual processing
does not (e.g., Machery, 2007). In light of this criticism, previous
studies have taken steps to minimize conscious, deliberate con-
ceptual elaboration and imagery by using more implicit tasks such
as lexical decision and masked word presentation, thus focusing
on the automatic, unconscious aspects of conceptual processing
(e.g., Kiefer et al., 2012; Trumpp et al., 2013; Willems et al., 2010).

While these studies have been important in demonstrating that
early automatic processes in concept retrieval also involve sen-
sory-motor representations, we see the categorical distinction
between concepts and imagery as an artificial dichotomy. It seems
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more likely that concept retrieval can involve a variable amount of
sensory-motor reenactment, where the extent of the reenactment
depends on the specific demands of the task. We know, for in-
stance, that word imageability (a direct measure of how readily
mental images come to mind) affects behavior even on “shallow”

tasks such as lexical decision (e.g., Evans et al., 2012), suggesting
that “images” are activated to some degree even during such tasks.
When more extensive or detailed sensory-motor information is
required (e.g., during narrative comprehension), retrieval of this
information may be experienced as conscious imagery. In all cases,
however, sensory-motor information about a concept is being re-
trieved. Thus, we see automatic, unconscious activation of con-
ceptual features, on the one hand, and deliberate, vivid imagery,
on the other, as two ends of a continuous range of conceptual
knowledge retrieval. Studies that have focused on implicit concept
retrieval have made a fundamental contribution to our under-
standing of conceptual processing; however, implicit activation of
conceptual features is only one aspect of a larger, more complex
phenomenon.
5. Conclusions and future directions

Our results show that the distributed cortical representation of
concrete lexical concepts can be predicted, to a considerable ex-
tent, by information about the relative relevance of five attributes
of sensory-motor experience – sound, color, visual motion, shape
and manipulation – to the content of those concepts. Furthermore,
these results show that the activation patterns elicited by concrete
concepts are consistent enough across participants to be useful in
predicting group-averaged data.

This approach advances our understanding of the neural sub-
strates of conceptual knowledge by framing individual concepts as
points in a multidimensional representational space, defined by
elementary features of phenomenal experience that can be map-
ped onto known functions of the brain. By adding new attributes
to the encoding model, we hope to determine which ones capture
relevant aspects of this representational space based on howmuch
they contribute to prediction accuracy. By restricting the analysis
to different brain regions, we also plan to explore how their con-
tributions to concept representation relate to their known func-
tions in other domains.
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