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Connecting functional brain imaging and Parallel Distributed Processing

Christopher R. Cox, Mark S. Seidenberg and Timothy T. Rogers*

Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA

Functional neuroimaging and Parallel Distributed Processing (PDP) theory, both introduced to cognitive science in the
1980s, led to influential research programmes that have proceeded in parallel with little mutual influence. The PDP
approach advanced specific claims about the nature of neural representations that, perhaps surprisingly, have gone largely
untested in functional brain imaging. One reason may be the widespread use of univariate statistical methods for analysing
brain imaging data, which typically rely on assumptions that render them unable to detect distributed representations of the
kind that PDP predicts. More recent multivariate methods for image analysis may be better suited to detecting such
representations. In the current article, we consider why univariate methods have been insufficient to test PDP’s
representational claims, articulate some of the properties that neural representations ought to have if the PDP view is
valid and then survey the recent neuroimaging literature for evidence that neural representations do or do not have these
properties. The survey establishes that the PDP view of distributed representations has considerable evidential support. This
analysis underscores the importance of understanding how the assumptions underlying methods for analysing functional
imaging data constrain the kinds of questions that can be addressed. We then consider the implications for our developing
understanding of the neural bases of cognition and for the design of future brain imaging studies.

Keywords: distributed representations; PDP; fMRI; MVPA

Distributed representation is one of the central tenets of
the Parallel Distributed Processing (PDP) framework
(Rumelhart, McClelland, & Hinton, 1986). The basic
notion is that entities such as words, concepts, objects,
faces, places and so on are represented by patterns of
activity over sets of neural processing units. An individual
unit may participate in many different representations,
while representations that express similar content will be
coded with similar patterns over many units. The utility of
such representations has been demonstrated in PDP
models of many phenomena in many domains; a recent
special issue of Cognitive Science, for instance, surveyed
the impact of the PDP approach in the domains of
learning, perception, language, memory, cognitive control
and consciousness (see Rogers & McClelland, 2014 and
accompanying articles). Together such models instantiate
a theory of cognitive representation and processing that
differs from traditional approaches involving rules (Pinker,
1991), ‘theories’ (Gopnik & Wellman, 1994) and other
symbolic representations (Tenenbaum, Griffiths, & Kemp,
2006). The models explain how representations of differ-
ent types of knowledge develop, how such knowledge is
structured and organised, and how it is used in performing
different tasks. Models using distributed representations
have provided new accounts of important elements of
intelligent behavior (e.g., generalisation) and explain
detailed aspects of behaviour that other theories miss

(e.g., the quasiregular character of language and other
types of knowledge; Plaut, McClelland, Seidenberg, &
Patterson, 1996; Seidenberg & Plaut, 2014).

Despite these successes, important questions remain
about the epistemic status of distributed representations.
The promise of the PDP approach was that the use of
‘neurally inspired’ constructs such as distributed repre-
sentations would prepare the way for integrated theories of
behaviour and its brain bases. On the cognitive side, the
relevance of distributed representations to understanding
behaviour is well-established, but the models obviously
abstract away many complex properties of neural systems.
On the neurobiological side, it is generally accepted that
mental representations are instantiated as patterns of
activity over large systems of individual neurons, which
communicate through synaptic networks with structure at
multiple spatial scales. It remains unclear, however, just
how such networks represent entities such as words,
concepts, objects, etc. (Quiroga, Reddy, Kreiman, Koch,
& Fried, 2005). The gulf between high-level cognitive and
low-level biological understanding of representation thus
raises questions about the extent to which the neural
representations of cognitive entities are distributed in the
PDP sense.

This paper considers the status of distributed represen-
tations by examining their relevance at the level of
analysis we will term ‘neurocognitive’ – the level at
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which the processing units of neural network models
arguably make closest contact with measurements of the
neural activity underlying cognitive behaviours. Specific-
ally, we consider whether measurements taken at the scale
supported by fMRI and other contemporary functional
brain imaging methods reveal neural representations that
are distributed in the PDP sense. The grain at which these
methods engage cognitive phenomena seems roughly
similar: the units in PDP models are not neurons but
capture, in simplified and abstract form, the aggregate
behaviour of many neurons. Likewise voxels in neuroima-
ging studies reflect, not the activity of individual neurons,
but the aggregate behaviour of many thousands of
neurons. Many important phenomena have been explored
using both approaches. Our question, then, is whether
neural representations of cognitive entities like words,
objects, faces and concepts are distributed at this level.

It is perhaps surprising that this question has only
recently begun to receive serious attention. Neuroimaging
methods and neural network modelling were introduced to
the study of human cognition at about the same time (see
Posner, Petersen, Fox, & Raichle, 1988; (Rumelhart,
McClelland, & PDP Research Group, 1986), and the two
methods have developed in parallel. The initial applica-
tions of neuroimaging involved questions about the neural
structures subserving different types of skills (e.g.,
decision making) or types of information (words, faces,
places) –indeed, many contemporary studies retain this
focus. To answer such questions, researchers have often
applied univariate statistical methods that, though they
may initially seem appropriate for addressing many
fundamental questions about brain organisation, tacitly
adopt assumptions about representation that run contrary
to those developed under PDP. In fact, we will argue,
these methods are not merely unsuitable for testing
alternative hypotheses about the characteristics of neural
representations: the assumptions underlying the analytical
procedures themselves limit the kinds of results that can
be observed. Although many studies appear to provide
evidence for local rather than distributed representations
(e.g., of words: Glezer, Jiang, & Riesenhuber, 2009; faces:
Kanwisher, McDermott, & Chun, 1997), reasoning from
data to conclusion in these cases is often informal,
appealing to intuitions rather than strong tests of compet-
ing hypotheses. The consequence is that, despite being
close contemporaries, the two methods have exerted
comparatively little mutual influence and have led, in
some cases, to quite different views about how informa-
tion is organised in the brain.

Recent years have witnessed the elaboration of new
multivariate methods for analysing neuroimaging data that
seem better suited to assessing the status of neurocognitive
distributed representations in the brain (Pereira, Mitchell,
& Botvinick, 2009; White & Poldrack, 2013). Indeed, in
some cases, the new methods were directly motivated by

the theoretical gap between classical functional imaging
and the view of cognition offered by neural network
models (Kriegeskorte, 2009; Norman, Polyn, Detre, &
Haxby, 2006). Although they also adopt important under-
lying assumptions that affect the kinds of results that can
be obtained (Cox & Rogers, submitted), the variety of
methods currently on offer, and the general ubiquity of
multivariate studies in recent work, together have yielded
sufficient evidence to permit us to assess, for the first time,
whether neural representations at this scale are distributed
in the way that PDP models have long suggested.

Before beginning, it is worth considering in more detail
the rough correspondence suggested earlier between units
in a PDP model and voxels in a brain imaging study. What
motivates this analogy, beyond convenience? Brains are,
of course, composed of neurons, and neural network
models are sometimes described as assemblies of neu-
ron-like processing units. Thus, it might seem natural to
think of a unit in a PDP model as roughly analogous to a
single neuron. The analogy is tenuous, however. Whereas
individual neurons exhibit all-or-nothing spiking behavi-
our, units assume continuous activation states. Low-level
dynamics such as lateral inhibition, temporal coherence
and local extra-cellular conditions are glossed over in
most connectionist models despite being critically import-
ant for understanding the behaviour of individual neurons.
The models also abstract away from morphological
differences among neuron types, cytoarchitectonic details
such as the organisation of neurons into cortical columns
and other facts about brains. PDP units can instead be
viewed as capturing, in a modest number of processing
elements, the same informational states existing across
vast numbers of heterogeneous spiking neurons in real
nervous systems (Rogers & McClelland, 2014; Smo-
lensky, 1986). The central assumption is that the repres-
entational content and cognitive functions expressed in the
coordinated spiking behaviours of hundreds or thousands
of neurons can be usefully approximated as a much
smaller vector of continuous-valued activations, with
individual units corresponding to single elements within
the vector and summarising the informational states of
large populations of neurons.

Functional brain imaging adopts essentially the same
central assumption. fMRI does not measure the activity of
individual neurons but infers, via changes in blood
oxygenation level at the scale of approximately 3 mm3,
the net synaptic input delivered to a population of
thousands of individual spiking neurons (Arthurs &
Boniface, 2002; Logothetis & Wandell, 2004). That is,
each voxel provides approximate summary information
about metabolic demands exerted by a large population of
individual neurons. The effort to relate such measurements
to cognitive representations and processes entails the
assumption that there exists, in real brains, an important
relationship between neural activity abstracted at this scale

2 C.R. Cox et al.
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and the representations and processes that underlie cogni-
tion. Put differently, if functional brain imaging is to have
any validity, it must be the case that the representational
content and cognitive functions expressed in the coordi-
nated spiking behaviours of hundreds of thousands of
individual heterogeneous neurons can be usefully approxi-
mated with a smaller vector of continuous-valued activa-
tions. In this case, the elements of the vector are individual
voxels and their values summarise a statistical relationship
between the BOLD time-series at the voxel and other
cognitive events, but the parallel to the central PDP
assumption is clear. For this reason, in what follows we
take the activation of a single unit to be a model analogue
of the mean activity in a population of neighbouring
neurons, similar to that estimated from changes in the
BOLD response at a single voxel using fMRI. The central
question is whether neural representations so measured
have the properties that the PDP framework predicts.

In the next section, we make explicit the representa-
tional assumptions that underlie standard univariate
approaches to image analysis and then contrast them to
those inherent in PDP models of cognition. This exercise
establishes why standard neuroimaging methods have
been insufficient to test PDP’s representational claims,
and thus the need to consider results from multivariate
methods. We end the section by stating four properties that
neurocognitive representations are predicted to possess
according to the PDP framework. The remainder of the
paper then surveys current evidence bearing on each of the
four properties.

Contrasting representational assumptions in classical
brain imaging and PDP models

We have suggested that the univariate methods that have
been standard in functional brain imaging for many years
are not suited to assessing whether neurocognitive repre-
sentations are distributed. Such methods developed from a
mainly modular view of neurocognitive organisation: dif-
ferent cognitive functions or representational domains were
thought to be supported by different discrete and contiguous
regions of cortex; neurons within the region were thought to
be strongly active when the region’s function was being
carried out and relatively inactive otherwise; and the goal
was to assess which regions supported which functions or
representational domains. To meet this goal, statistical
methods were developed that allowed the researcher to
identify contiguous regions of cortex that, across groups of
participants, showed systematically different levels of
activation in different experimental conditions.

The analysis that became standard proceeded as
follows: data are first pre-processed to minimise noise
and eliminate confounding trends in the data, such as slow
oscillations and head motion. The data are then spatially
smoothed: each voxel’s estimated response is replaced

with a weighted average of neighbouring voxel responses,
with the weight diminishing as a Gaussian function of
spatial (anatomical) distance. Next, data from multiple
subjects are aligned to a common atlas on the basis of a
few common anatomical landmarks and an affine trans-
form, so that voxels in the same relative anatomical
location can be related across participants. The time series
of activation from each voxel is then modelled separately;
it is now common for this to be done using a mixed-
effects regression model, with participants treated as a
random effect. The analysis produces a single statistical
map of the brain, with the effect of the experimental
manipulation estimated at each voxel, independent of the
activity estimated at other voxels (aside from the local
correlations emphasised by spatial smoothing). To deter-
mine the statistical significance of these effects while
avoiding punishing corrections for multiple comparisons,
steps are typically taken to reduce the number of
comparisons assessed, for instance by cluster-thresholding
(i.e., only testing voxels whose anatomical neighbours
show similar patterns of contrast) or averaging voxel
responses over regions of interest.

From this brief description, it is clear that univariate
methods adopt particular assumptions about what neural
representations must be like. The assumptions are not
typically spelled out, however, so we articulate them here,
then consider how they differ from the corresponding PDP
assumptions:

(1) Independence of representational elements. The
approach tests statistical associations between
cognitive states and the states of individual voxels
taken independently. Interactions among voxels
are not considered. Thus, the approach assumes
that the representational or processing significance
of a given voxel’s activation does not depend
upon the states of other voxels. Each voxel
encodes whatever it encodes, regardless of what
other voxels are doing at the time.

(2) Discrete representation and functionality. The
group-level significance tests that are typically the
final result of a functional imaging study discrim-
inate voxel groups that show reliable differences
between conditions from those that do not. The
implication is that such voxel groups are involved
in encoding a given kind of representation or
carrying out a particular process while other voxels
are not, suggesting a discreteness of functionality in
which each region contributes to one kind of
representation or process and not to others.

(3) Homogeneity of representation within and across
individuals. A third assumption is that the voxels
contributing to a given representation respond to
relevant items in essentially the same way, both
within and across individuals. For instance, if one

Language, Cognition and Neuroscience 3
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voxel contributes to the visual representation of a
face by increasing its activation, other face-
representation voxels should also respond by
increasing their activation, and this code –
increased activation for faces – should be the
same across individuals. This assumption is part
of what licenses several common statistical steps,
including region-of-interest analysis (in which the
activations of all voxels thought to contribute to a
representation are averaged to yield a single
number), cluster thresholding (where voxel acti-
vations are discounted if their anatomical neigh-
bours do not respond similarly), spatial smoothing
(where activation of a voxel is replaced with a
weighted average of its neighbour’s activations)
and group-level statistical tests of voxel activa-
tions – steps that will only improve signal
discovery if, in fact, elements of a representation
respond to objects of representation in essentially
the same way within and across individuals.

(4) Homogeneity of location within and across indi-
viduals. Finally, the approach assumes that the
voxels contributing to a given function or repres-
entation are localised similarly both within and
across individuals. For instance, if a given voxel
encodes the presence of a face, then neighbouring
voxels in the same individual should also encode
faces, and voxels residing in the same anatomical
location in other individuals should likewise
encode faces. This assumption is also required to
justify several of the data-processing steps noted
in (3) above: region-of-interest analysis, cluster-
thresholding, spatial smoothing of the BOLD
signal and group-level statistical tests at a given
anatomical location. Again, these steps will only
lead to accurate signal discovery if the elements of
a representation are anatomically localised in
similar ways within and across individuals.

We do not assume that all researchers who employ univariate
methods explicitly endorse all of these assumptions about the
nature of neurocognitive representations. Because the meth-
ods have become sowidespread, they often may be treated as
the default method by researchers who might otherwise view
the assumptions as we have stated them with some scepti-
cism. Our purpose here is to make the underlying assump-
tions of the statistical methods very explicit, so as to better
illustrate why they can fail to uncover important structure if
the central assumptions are invalid.

It is also important to note that there are at least two ways
in which neurocognitive representations may be viewed as
being distributed while still conforming to these assump-
tions. First, the word ‘distributed’ is sometimes used in
cases where univariate contrasts reveal reliable differences
in BOLD response, not just in one cortical area, but in

multiple anatomically well-separated areas. For instance,
univariate fMRI studies of visual perception often show
elevated BOLD responses for faces relative to other objects
in parts of the occipital cortex, the posterior fusiform and
the antero-ventral temporal lobe (Behrmann & Plaut,
2013). These regions are sometimes then described as
forming a distributed network for face representation.
Second, the word ‘distributed’ sometimes refers to the
case in which a representation is encoded over multiple
regions, each encoding a different kind of information. For
instance, theories of semantic representation often view the
meaning of a word as being distributed over cortical regions
that each individually encodes a particular kind of sensory,
motor or linguistic information. Thus, the colour of item is
represented within a colour area, shape is coded within a
shape area, characteristic motion is encoded within a
motion area and so on (Martin & Chao, 2001). In this
scenario, the meaning representation is distributed as a
pattern of activation across many potentially widely
dispersed cortical regions, with the regions themselves
individually behaving according to the assumptions of
standard univariate image analysis. Within the colour
area, for instance, the voxels are still viewed as always
encoding colour without contributing to the representation
of other kinds of information; as encoding the colour
information independently, so that state of units outside the
colour area need not be taken into account; as being
anatomically situated within the same contiguous region;
and as being homogeneously located across individuals.

Neither of these cases is at odds with the PDP view of
distributed representation, but they are of less interest here
because on these views, the components of the distributed
representation each individually conform to the univariate
assumptions and so can be discovered through standard
methods with the appropriate contrasts. The PDP frame-
work, however, allows for the possibility that representa-
tions may also be distributed in other ways that violate the
univariate assumptions and so cannot be discovered by
these methods. To see this, it is useful to consider the
behaviour of a very simple model, such as the model
that learns the XOR (‘exclusive or’) mapping shown in
Figure 1A. In this problem, the model must activate an
output unit if the two input units are in different states
([0,1] or [1,0]), but not if they are in the same state ([0,0]
or [1,1]). To learn this mapping, the model is first given
weights with small random values centred on 0 and is
then trained with backpropagation to generate the correct
output state for each input pattern. Regardless of the initial
weights, the model eventually learns to generate the
correct output for each input – thus the model’s overt
behaviour is invariant with respect to the initial weight
state. Nevertheless, the model’s internal representations –
the patterns of activation generated by a given input over
the hidden units – can vary substantially from training run
to training run.

4 C.R. Cox et al.
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Figure 1B show these patterns for three different training
runs, initialised with different random weights. Across
runs, each hidden unit learns a different response to the
input. The bottom row shows the activation of each hidden
unit to each pattern averaged over 100 training runs
initialised with different random weights. From the mean
activations over runs, there appears to be no systematic
structure in the representations acquired: the average
activation of both hidden units is about 0.5 over all four
input patterns. There are, however, isomorphisms in the
learned representations across network runs. Figure 1C
shows the same hidden unit activations as two-dimensional
plots for the three individual runs (panels 1–3), and a 2D
scaling of the Euclidean distances between inputs patterns
averaged over many runs (panel 4). Though each hidden
unit behaves quite differently across network runs, never-
theless the representational structure extracted over both
units across runs is quite similar: in each solution, two input
patterns that generate the same output are represented in
one corner of the space while the other two are on the

opposite side, with a linear plane separating these. On
average across runs, items that generate the same output are
represented internally as more similar to one another than
they are to items that generate different outputs (Figure 1C,
panel 4). In other words, across different training runs of the
same network, a given internal unit behaves very differ-
ently, but the representational structure coded across both
hidden units is quite similar. The same data are presented in
Figure 1D as representational similarity matrices to further
elucidate these qualities.

Though very simple, the XOR model illustrates four
characteristics of the distributed representations that
emerge through learning in PDP models and that differ
from those assumed by univariate analyses of brain
imaging data:

(1) Interdependence of representational elements. In
PDP models, interesting representational structure –
phonological, morphological, conceptual, visual, etc.
–is encoded in the patterns of activation evoked

Figure 1. (A) The architecture of the XOR model, a simple feed-forward model that illustrates several properties central to the PDP
approach. The model is composed of five units. Two input units send projections to two hidden units, which both project to one output
unit; each unit is also given a trainable bias. The model, given two inputs, must produce their exclusive-or (XOR). The four panels show
these inputs and outputs; circle shading indicates unit activation, ranging from zero (white) to one (black). (B) Hidden unit activations
generated by the four different inputs (shown above in panel A) after training in three different runs of the network initialised with
different random weights. The bottom row shows the mean activation of each unit for a given input pattern averaged over a hundred runs
of the network. (C) Plots of the hidden unit activations for each of the three individual solutions shown in (B), and a 2D scaling of the
average Euclidean distances amongst hidden patterns across a hundred network runs. Though the hidden units take individually do not
appear to encode consistent structure, the similarities of the patterns across both units are highly consistent across runs. (D)
Representational similarity matrices for the hidden unit solutions and the mean similarities across 100 solutions. Light squares indicate a
smaller Euclidean distance between patterns.

Language, Cognition and Neuroscience 5
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across whole ensembles of units, but may not be
apparent in the individual activity of single units
within the ensemble. This characteristic is apparent in
the XOR model: though there are only two units
coding internal representations, both are clearly
involved in expressing the interesting representa-
tional structure. Neither the mean activity of indi-
vidual units across models nor the raw activity of
individual units within a given model is sufficient to
determine which inputs produce similar outputs.
When the similarity structure of the patterns evoked
by different inputs across both units is taken into
account, the underlying representational structure is
apparent both in individual models and on average
across models.

(2) Graded representation and functionality. In PDP
models, a given unit can participate in the
representation of many different items. Within a
distributed representation that robustly distin-
guishes, say, two different domains, a single unit
may activate for subsets of items from both
domains, or for all items in one domain and a
few items in the other, or for only a subset of
items within a single domain and so on. For
instance, the XOR model can be viewed as
differentiating two kinds of input patterns: those
where both units are in identical states from those
where the units are in different states. How then
do the internal units participate in the representa-
tion of these two categories? In the first solution
shown in Figure 1, the left-most internal unit
activates for the inputs [0,1], [1,0] and [1,1], and
thus in some sense contributes to the representa-
tion of all items in the ‘different’ domain and one
item in the ‘same’ domain. The other unit
activates only for the [1,1] pattern and so in one
sense contributes to the representation of only half
the items in the ‘same’ domain. What really
matters to the model is the degree to which
different objects of representation elicit similar or
different patterns of activation across unit ensem-
bles; because this is true, any single element of the
representation may appear to contribute to many
different representations, in virtue of showing
systematically increased or decreased activation.

(3) Heterogeneity of representation within and across
individuals. In PDP models, the units that jointly
encode a distributed representation – typically
units within the same layer, which are connected
in similar ways to other units in the network – can
nevertheless exhibit very different responses to
their inputs. Indeed, because the patterns of
activation across units in a layer express repres-
entational structure suited to the task at hand,
units within a layer must respond at least

somewhat differently to different inputs. We see
this in the XOR network, where the representa-
tional role adopted by one hidden unit always
complements and never mimics the role adopted
by the other. Within a single network, then, the
components of the internal representation are
heterogeneous in their responses to inputs. Across
different runs of the network, the two hidden units
can learn quite different representational codes,
illustrating that internal representations can be
heterogeneous across individuals as well in this
framework. With increased representational capa-
city in the form of more hidden units, it is likely
that some subsets of units would come to exhibit
similar responses across inputs, but other unit
subsets would still have to adopt different
response profiles so that, across hidden units,
quite different patterns of responses are observed.

(4) Heterogeneity of location within and across
individuals. Finally, even where different net-
works adopt the same representational code for
various inputs, the localisation of the code over
units – the particular way that a given unit in a
given layer responds to various stimuli – can vary
arbitrarily. For instance, the XOR network often
discovers a solution in which one internal unit
acts as an AND operator (activating only when
both inputs are active) while the other acts as an
OR operator (activating whenever at least one
input is active). This set of networks can be said
to have discovered essentially the same internal
code for the inputs, but the localisation of the
code – exactly which hidden unit adopts which
functional role – varies at random across the set.
The same can be true of hidden unit representa-
tions within larger networks. For instance, con-
sider training the XOR model in an architecture
containing four hidden units instead of two. In
such a model, one solution can involve having
two hidden units both function as AND units and
the other two both function as OR units – yet
there is no need for the two AND units to be
anatomically adjacent to one another. Again,
exactly which unit adopts which response profile
can vary arbitrarily even within the network.1

We are now in a position to see why univariate methods
for analysing brain imaging data are insufficient to test
whether neural representations are distributed at this
scale. The PDP view suggests that each of the repres-
entational assumptions underlying the standard approach
may be invalid, in which case the method cannot detect
the stipulated properties if they exist. If representational
structure is encoded in patterns over sets of units but not
in the states of units taken independently then univariate

6 C.R. Cox et al.

D
ow

nl
oa

de
d 

by
 [

M
ar

k 
S.

 S
ei

de
nb

er
g]

 a
t 1

1:
08

 0
6 

Ja
nu

ar
y 

20
15

 



statistics will produce null results. Univariate contrasts
will fail to identify individual representational elements
that happen to contribute to representations of items
from both of the contrasting domains. If the elements of
a representation encode information in heterogeneous
ways, then averaging voxel activations within or across
individuals will destroy signal, potentially leading to
null results. If the elements encode information in the
same way but are differentially localised either within or
across individuals, then averaging across voxels at a
given anatomical location will likewise destroy signal.
Thus, if neural representations do have the properties
predicted by PDP, standard univariate methods will fail
to discover them. Univariate studies that potentially
offer evidence for discrete, local representations are
therefore difficult to interpret: they may fail to find
evidence for distributed representation either because
such representations do not exist at the level probed by
functional brain imaging, or because the methods are
not capable of detecting them.

Multivariate approaches hold the promise of remediating
these limitations. As in PDP, such approaches focus on
understanding the nature of the information contained in
patterns of activation across sets of representational units
taken together. Thus, they do not assume independence of
representational elements, discreteness of representation or
homogeneity of representation. Some approaches do assume
homogeneity of location within and across individuals, but
newer methods are beginning to relax this assumption as
well. Moreover, in some cases, the contrast between results
from univariate versus multivariate analyses and, in other
cases, a close inspection of the multivariate results alone
can provide direct evidence testing whether neural repre-
sentations are in fact distributed.

In the remainder of the paper, we survey recent work in
functional neuroimaging to assess the status of each of the
four properties of representations predicted by PDP. Our
principal aim is to assess the face validity of the four
properties. Our goal is not to conclusively determine
whether representations in some domain are distributed (in
the PDP sense) because the current state of the evidence
does not allow this; rather it is to determine whether
neural representations are even plausibly distributed in this
sense. In each case, we will first consider what evidence
for distributed representation would look like, and then
review studies that report relevant evidence. Following
this survey, we conclude by briefly considering how brain
imaging might best be approached if the PDP representa-
tional claims are valid.

Independence versus interdependence of representational
elements

As we have seen, one point of contrast in the representa-
tional assumptions of univariate brain image analysis and

PDP concerns the degree to which elements of a repres-
entation – units in a model or voxels in the brain –
individually express important cognitive content. Standard
brain imaging approaches assume that the important
elements of representation can be discovered through
univariate analyses, and hence that the elements contribute
independently to representations. The fact that univariate
methods often succeed in finding such elements indicates
that clusters of voxels do indeed sometimes behave in
ways amenable to discovery via univariate analysis. PDP,
however, posits that information can sometimes exist in
the pattern of activation across multiple units, without
being reflected in the individual activations of the
components. Is there any evidence supporting this
hypothesis?

What might such evidence look like? As a start,
consider that, if the univariate assumptions are always
true, then the information encoded across all units in a
representation will also be reflected in the individual
elements of the representation. That is, there should be
little or nothing gained in analysing sets of voxels all
together compared to analysing individual voxels sepa-
rately, since each element contributes to the representation
independently. If the PDP assumptions are valid, however,
there should be information contained in the patterns of
activation across units that cannot be decoded from
individual voxels taken separately. Thus, if multivariate
methods and univariate methods, applied to the same data-
set in search of the same information, identify different
voxel sets, this would suggest that the PDP assumption is
valid.

Jimura and Poldrack (2012) conducted just such an
analysis in a study of how the brain processes gain and
loss in a gambling task. Many cortical regions were
identified using a multivariate searchlight analysis (Krie-
geskorte, Goebel, & Bandettini, 2006) that were not
detected by the univariate method. If the searchlight
method had simply identified a superset of the regions
identified by the univariate method, the result might not
be compelling – it may simply be that multivariate
methods are ‘highly opportunistic’ (Kriegeskorte et al.,
2006, p. 550), identifying regions with very weak signal
just as might happen by relaxing the significance criterion
in a univariate statistical test. What makes the result
particularly interesting in the current context is that the
voxels identified by the univariate analysis were not
simply a subset of those identified in the multivariate
analyses. In addition to flagging regions that seemed
irrelevant from the univariate analysis, the multivariate
analysis did not flag several regions implicated by the
univariate analysis.

Other work has demonstrated that the results of
univariate and multivariate methods can actually doubly
dissociate. Riggall and Postle (2012) noted that regions in
frontal and parietal cortex displayed sustained activation
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during the delay period of a working memory task in
which participants were required to hold in mind the speed
and direction of an array of moving dots. The authors
trained a multivariate pattern classifier to determine which
direction of motion was being held in memory, using the
activations of voxels in these fronto-parietal regions as
inputs. The classifier was unable to decode patterns at a
level greater than chance, indicating that, despite the
systematically elevated delay-period activity in these
regions, the patterns did not encode the contents of
working memory. Decoding was possible, however, from
classifiers trained on voxels in the occipital cortex, even
though this area did not show elevated delay-period
activity according to the univariate analysis.

Such result might initially seem counterintuitive –
surely an effect that can be detected by univariate methods
must also be picked up by a multivariate approach. To see
why this intuition is incorrect, consider the patterns shown
in the schematic Figure 2. Each row of large squares
corresponds to a different searchlight that fixates on
separate sets of voxels (small squares); assume that these
are exactly the same voxels across three subjects. The
fourth large square in each row corresponds to a blurred
average of the voxels in that searchlight over the three
subjects. The colouring of the smaller squares indicate the
degree to which each voxel’s activations reliably predicts
an experimental factor of interest: for instance, bright blue
voxels might reliably predict that a stimulus item was
from category A, while bright red squares reliably predict
category B. Pale colours indicate voxels whose activity is

only weakly correlated with the contrast of interest, while
grey squares show uncorrelated voxels.

The first searchlight exemplifies a case where a
searchlight MVPA will identify signal missed by univari-
ate analysis. Within each individual searchlight there are
2 or 3 voxels that reliably carry useful information about
the stimulus class so that a trained classifier will success-
fully generalise to a hold-out cross-validation set. Such a
classifier will therefore perform well for each individual
subject, and the searchlight method will flag this search-
light location as encoding information relevant to the
discrimination. Yet the particular way the information is
encoded is highly variable across voxels in the searching
for each individual, as is the exact anatomical location of
the signal-carrying voxels. Blurring within subjects will
thus dilute signal with noise, and averaging at a given
location across subjects will further eliminate signal. As a
result, the mean difference over subjects within the first
searchlight will be near zero for all voxels.

The second searchlight shows the reverse case: here,
most of the voxels in each subject are uncorrelated with
the distinction between A and B, and only a small subset
is weakly correlated with the distinction. A classifier
trained on each subject individually has a high likelihood
of failing a cross-validation assessment. If the classifier
fails in many subjects, the searchlight centre will not be
identified as reliably encoding information relevant to the
distinction, meaning that this region will not be identified
by a searchlight MVPA. The weakly covarying units,
however, happen to encode the distinction of interest in
the same manner, and to reside near one another within

Figure 2. Each row corresponds to a searchlight that contains a set of 25 voxels. These voxels are the same across subjects, but different
across the two searchlights. Searchlight 1 exemplifies a case where a searchlight MVPAwill succeed but a univariate analysis, employing
blurring within and averaging across subjects, will fail. Searchlight 2 exemplifies a case where a searchlight multivoxel pattern analysis
(MVPA) is likely to fail but a univariate analysis will succeed. See the text for a more full discussion.
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and across individuals. The univariate assumptions are
met, so smoothing within and averaging across individuals
reduces noise and allows detection of the voxel with
univariate tests. Thus, the searchlight MVPA can fail to
find signal in the very cases the univariate approach was
designed to address – that is, when the signal is buried in
noise within individuals, but is coded independently in the
same way and in the same location within and across
individuals (see Cox and Rogers, submitted, for simula-
tion examples of this case).

Graded versus discrete contributions to representation

The second point of contrast concerns the degree to which
a given representational element can participate in many
different representations. The classical view posits a
discrete functional specialisation, in which each element
contributes only to a particular kind of representation –
with, for instance, a given voxel activating only for faces
(or a subset of faces), or for animals (or a subset of
animals) and so on. Distributed representations, in con-
trast, are useful because they allow representational
structure to be expressed as graded similarities across
many representational elements. In such a scheme, any
individual element will contribute, in graded fashion, to
the representation of many different items or even to
different representational domains. Thus, a second import-
ant question for the literature is whether it contains
evidence that individual voxels contribute in a graded
fashion to different representations.

A clever indirect method for answering this question
leverages neuronal adaptation (Grill-Spector, Henson, &
Martin, 2006). Typically, the neural response to a stimulus
will decrease over repeated presentations of the same item
as active neurons deplete their resources with repeated
firing. If representations are distributed so that two stimuli
evoke overlapping patterns, the overlapping portions of
the patterns would also be expected to adapt. Though the
adaptation is happening at a scale much smaller than a
functional voxel, if there is sufficient overlap across the
representations, the net effect will be to diminish the
voxel’s response relative to an appropriate control condi-
tion. The method naturally extends to any domain where
one is interested in testing whether neural representations
overlap.

One particularly interesting domain to which fMRI
adaptation analysis has been applied is lexical semantics
evoked by word reading. Printed words are highly
controlled stimuli, and orthography and phonology are
both relatively uncorrelated with semantics, so it is
possible to dissociate semantic from perceptual similarity
(e.g., BIG and LARGE are semantically similar but
formally dissimilar; HAIR and PAIR are semantically
dissimilar but formally similar). Also, there is a deep
psycholinguistic literature that has set a high bar for

stimulus set composition; it is standard practice to control
for word frequency and other potentially psycholinguistic
dimensions, further isolating effects of interest.

With such stimulus sets, it is possible to use the
adaptation procedure to assess the extent to which
representations of different word meanings overlap. If
such meanings are expressed as distributed patterns of
activation, with similar meanings evoking similar and
therefore overlapping patterns, the predictions for such a
study are clear: the adaptation arising from successive
presentations of semantically related words should be
larger than that produced by successive unrelated words.
That words from the same semantic category (e.g., two
vehicles) result in more adaptation than words from
different categories (e.g. a vehicle and an animal) is a
widely replicated effect (Henson & Rugg, 2003; Rissman,
Eliassen, & Blumstein, 2003; Wheatley, Weisberg, Beau-
champ, & Martin, 2005). However, to address the PDP
prediction that representations express graded similarity,
more than two points are needed. With only two condi-
tions, whether there is representational similarity among
items from the same category cannot be assessed. To our
knowledge, graded similarity structure for the meanings of
words refering to objects has not been explored using this
method. It has, however, been explored in the domain of
numbers and numeric magnitude. For example, Piazza,
Pinel, Le Bihan, and Dehaene (2007) found that the
degree of dishabituation between a habituated numeric
quantity or numeral and a deviant stimulus was a function
of the difference in magnitude. This suggests that there is
graded similarity among number concepts, even when
presented as Arabic numerals. This outcome would not be
expected if the representations of meanings were discrete
and non-overlapping.

Representational overlap can also be assessed by
comparing the solutions found by two or more multi-
variate pattern classifiers within the same subject. Many
such classifiers assign real-valued weights to each voxel
that indicate the degree to which the voxel contributes to
the relevant discrimination. When two or more classifiers
are trained to perform different discriminations, the
weights assigned by each classifier to each voxel can be
compared. Voxels that receive large weights in both
solutions can then be identified as important for both
representational distinctions.

Studies of this kind are far less abundant, but do exist.
One such study performed a three-way linear discriminant
analysis of evoked brain activity measured by fMRI to
distinguish trials in which subjects were presented with
pictures of either faces, houses or chairs (Carlson,
Schrater, & He, 2003). After demonstrating above-chance
pattern classification, the authors projected the solutions
associated with each discrimination onto the brain, pro-
ducing three maps of weights. The magnitude of each
weight indicated how much the activation of a given voxel
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‘pushes’ the distributed representation away from the
decision boundary, while the sign of the weight indicated
to which side of the boundary the representation is being
‘pushed’. The authors found that these solutions did
overlap somewhat, meaning that some of the same voxels
that were very indicative of ‘chairs’ were also very
indicative of ‘faces’, and so on. Such results are particu-
larly compelling given that the goal of linear discriminant
analysis is to find the voxels that maximally discriminate
between the three stimuli types. In principle this means
that, so long as there are sufficient voxels responding
uniquely to each category, other voxels showing similar
responses across two categories should be ignored – yet
the analysis nevertheless identified voxels that appear to
contribute simultaneously to two different object domains.

Heterogeneity versus homogeneity of representation

The third point of contrast concerns the degree to which
elements of a distributed representation respond in the
same way to objects of representation. By averaging
neural responses across voxels in an individual, and again
across individuals in group analysis, the standard
approach appears to assume that, by and large, all
elements respond to the objects of representation in the
same way. For instance, it may seem reasonable to
suppose that the voxels involved in coding perceptual
representations of faces do so by showing consistently
higher activation in response to visually presented faces
than to other objects. If this assumption is valid, and given
the inherently noisy nature of the measurements in
functional brain imaging, voxel averaging is the correct
thing to do: the noise at each voxel will cancel out across
voxels, revealing the true underlying signal. The PDP
view of representation, however, suggests the alternative
possibility that the elements of a representation may
respond to the objects of representation in quite different
ways, both within and across individuals. For instance,
one face-relevant voxel might show elevated activation for
one subset of faces and decreased activation of another
subset; another voxel might show a different pattern of
increased and decreased activation across various faces;
and the ensemble together might express the degree to
which different faces are perceptually similar. Since what
matters is the similarity structure taken across elements,
the responses of a single element within the representation
can vary almost arbitrarily on this view, both in an
individual subject and across different subjects.

At first blush, there seems to be a substantial body of
evidence in favour of representational homogeneity, both
within and across subjects. After all, univariate methods
that rely heavily on homogeneity have been applied
effectively to fMRI data and yield consistent results,
which would not be possible if neural responses to stimuli
were purely heterogeneous and arbitrary across

individuals. And, indeed, it has been demonstrated that
cross-subject classification using multivariate classifiers is
possible, albeit on coarse distinctions such as discrimin-
ating different tasks (Poldrack, Halchenko, & Hanson,
2009), sentences vs. pictures (Wang, Hutchinson, &
Mitchell, 2004) or line drawings of tools vs. dwellings
(Shinkareva et al., 2008).

Although these findings demonstrate that individual
brains share important structure, they do not demonstrate
representational homogeneity per se. To see this, consider
the study of Wang et al. (2004) and its later reanalysis
(Rao, Cox, Nowak, & Rogers, 2013). The data were
acquired while participants completed a cross modality
match-to-sample task: one of the stimuli was a simple
configuration of two symbols, and the other was a
sentence which either did or did not correctly describe
the configuration of symbols. Stimulus order was counter-
balanced, and the goal was to determine, from the evoked
BOLD response at a given time, whether the participant
was reading a sentence of viewing an image. In the
original study, classification across individuals was
achieved by averaging voxel BOLD response within a
small number of anatomically defined ROIs and training a
classifier using the averaged time series data from all but
one participant. The solution was then used to classify
each time-point in the functional data from the hold-out
individual, and the results showed reliable above-chance
performance. The analysis thus indicates a degree of
consistency across individuals in the mean response to
these different stimuli across coarse brain regions.

Still, the averaging at a broad grain ends up revealing
little about the nature of the representations within and
across individuals beyond this general consistency. Rao
et al. (2013) looked for representational structure at a finer
grain within and across subjects, using a whole-brain
multivariate pattern classification method in which the
responses of every individual voxel were provided as
input, rather than the mean response averaged over pre-
selected ROIs. To avoid over-fitting, the classifier
employed a regularisation penalty that preferred sparse
solutions (i.e., most voxels receive weights of zero) in
which selected voxels were located in roughly similar
anatomical regions across participants (the SOS Lasso; see
Rao et al., 2013 for a more detailed explanation). In one
sense, the analysis replicated the original study: the
majority of voxels that the classifier selected fell within
the ROIs determined to be most informative by Wang
et al. (2004). The classifier solution also differed from that
implied by the original analysis in important respects,
however. Specifically, it did not identify some regions
where all the weights were positive for all subjects
(indicating, for instance, increased activation for sentences
relative to pictures) and other regions where all the
weights were negative (indicating the reverse). Instead,
all regions identified included a mix of both positive and
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negative weights, consistent with the view that the
representational code – whether high activation is
observed for pictures or for words – can be heterogeneous
even within a given circumscribed region, both within and
between subjects.

Within this general mix, some regions showed a
generally higher proportion of positive weights and
others a generally higher proportion of negative weights,
suggesting one explanation of the original result: when
averaging across voxels within an region of interest (ROI),
the mean activity may carry signal because a majority of
the underlying voxels code the information of interest in a
particular way. But the analysis shows that such averaging
can mask considerable underlying heterogeneity in the
representational code.

Heterogeneity versus homogeneity of location

The final point of contrast concerns the degree to which
representations are localised homogeneously within and
across individuals. The adoption of ROI averaging,
cluster-thresholding and spatial smoothing require the
underlying assumption that the elements contributing to
a given representation will be located near one another
anatomically within subjects, whereas the anatomical
alignment and averaging across participants require the
additional assumption that localisation will be largely
consistent across individuals. The PDP view of repres-
entation, in contrast, suggests that the elements of a
distributed representation may in fact vary substantially
in their anatomical location both within and across
individuals.

Several studies have now suggested that, in a variety of
cognitive domains, neural representations are not confined
to a small number of discrete and homogenous cortical
regions but can be quite widely anatomically distributed.
Recall that, in the study by Riggall and Postle (2012)
discussed earlier, the authors were able to decode the
direction of motion being held in working memory from
activation patterns measured in occipital cortex. The same
study further showed, however, that classification accuracy
improved significantly when the logistic ridge-regression
classifier was trained on data from the whole brain. The
information maps generated from this analysis suggested
the direction-of-motion signal was encoded in a very
widely distributed cortical network and not solely within a
discrete region of visual cortex. Moreover, separate classi-
fiers were trained and tested for each individual participant,
so that the result did not arise from variability across
subjects but illustrated heterogeneity of location within
individual participants.

A similar result was obtained in a different domain in
an interesting study by Bulthé, De Smedt, and Op de
Beeck (2014). These authors applied multi-voxel search-
light, region of interest and whole-brain classifiers to the

same fMRI dataset, where the task was to decode numeric
magnitude either from trials where Arabic numerals were
presented (symbolic) or from trials where arrays of dots
were presented (non-symbolic). This is a particularly
interesting case, because prior univariate analyses impli-
cated the intraparietal sulcus (IPS) as functionally specific
for numerical magnitude, regardless of the stimulus
modality (e.g., Dehaene & Cohen, 1997). The results
indicated that both symbolic and non-symbolic magni-
tudes could be decoded from all lobes of the brain, and
that whole brain decoding was on par with, if not better
than, decoding from any individual lobe. The ROI
analysis indicated that numeric magnitude could be
decoded from nearly all ROIs during the non-symbolic
trials (the visual word form area being the only exception),
while only the IPS, fusiform, inferior occipital, left
superior parietal and the right superior frontal gyrus
supported the decoding of magnitude during the symbolic
trials. Finally, the searchlight analysis revealed that while
non-symbolic magnitude could be decoded locally almost
everywhere in the brain, symbolic magnitude could not be
decoded anywhere from such local information. Thus, in
this case, there appears to be information distributed
across very widely situated voxel sets that cannot be
extracted at more local scales, even by multivariate
methods.

As a third example, Rish, Cecchi, Heuton, Baliki, and
Apkarian (2012) used elastic-net classifiers to predict
judgements about the magnitude of a perceived stimulus
in three quite different tasks, including magnitude judge-
ments for visual object size, velocity of motion and pain
intensity. In each task, an elastic net regression was run to
select the 1000 most predictive voxels, a procedure that
identified widely distributed sets of voxels that reliably
predicted the magnitude of the pain. The authors then re-
ran the analysis after excluding the 1000 voxels identified
on the first run and found to their surprise that the
predictive accuracy of the new solution declined only
negligibly relative to the original one. This process was
repeated until performance reached floor. Remarkably,
predictive accuracy in all three tasks declined very slowly.
The authors interpreted this result as indicating that some
kinds of information, such as stimulus magnitude, may be
very broadly represented in the brain.2

Each example suggests that, at least in these particular
cases, voxels that contribute to the discrimination of
different cognitive states need not be situated near one
another within a small set of cortical regions. What about
localisation across individuals? Is it possible that neural
representations, even if they are widely dispersed anatom-
ically within individuals, are nevertheless anatomically
situated in similar ways across individuals?

The question can be very directly and elegantly
addressed by leveraging a simple insight: if a representa-
tion is localised in the same way across a sample of
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subjects, the alignment of functional data should improve
as the anatomical alignment improves. In turn, improving
the functional alignment should increase the effect size in
a univariate analysis. Tahmasebi et al. (2012) systematic-
ally varied how well participants’ brains were anatomic-
ally aligned within a common space by applying a series
of increasingly precise methods. He then assessed whether
better anatomical alignment subsequently led to stronger
effects in the analysis of functional data. In the experi-
mental paradigm, subjects listened to sentences with
ambiguous words (‘His new post was in China’), matched
unambiguous sentences (‘The old tree was in danger’),
signal-correlated noise (unintelligible noise matched to the
intelligible sentences with respect to their length, spectral
profile, and amplitude envelope) and silence in equal
measures. Prior work had established where different
univariate contrasts should produce reliable effects: the
contrast of sound to silence should activate the auditory
thalamus, for instance, whereas the contrast of sentences
to noise should activate primary auditory cortex, and the
contrast of ambiguous to unambiguous sentences should
activation the left posterior inferior temporal gyrus and the
left inferior frontal gyrus. With these predicted effects, the
central question was whether improved anatomical align-
ment would increase the functional effect size in the
relevant regions for each contrast of interest. The authors
found that such an increase was indeed observed in the
auditory thalamus, where auditory codes are presumably
highly localised and consistent across subjects. A similar
but weaker influence of alignment was also observed in
primary auditory cortex, again consistent with the view
that representations in this region should be relatively
consistent across participants. This result was not
obtained, however, for the contrast of ambiguous to
unambiguous sentences. The size of the ambiguity effect
was independent of the quality of the anatomical align-
ment, suggesting that the processes underlying ambiguity
resolution are not anatomically localised in precisely the
same way across subjects.

Other work has very directly assessed the degree to
which the location of representational and processing
structure varies across individuals. In one particularly
compelling study, Feredoes, Tononi, and Postle (2007)
considered a discrepancy in the neuroimaging literature
related to working memory: group-level analyses tend to
yield data consistent with the hypothesis that the pre-
frontal cortex (PFC) serves as a working memory buffer,
evidenced by a delay-period sensitivity to memory load,
whereas single-subject case study analyses tended to not
show this effect. Instead, single-subject analyses impli-
cated quite different regions in different people. These
single-subject effects tended to be of greater magnitude
than the group level effect in the PFC, leading to the
hypothesis that working memory is supported by different
regions in different people, with only weak involvement

of the PFC in any individual. Because the weak PFC
activity is more consistently localised across individuals,
however, this is the region that emerges in the group-level
univariate analysis. An alternative hypothesis, and the one
typically adopted in standard image analysis, is that the
single subject effects are just noise. To adjudicate these
interpretations, the authors applied transcranial magnetic
stimulation (TMS) in each participant to either the PFC
region identified in the group analysis or to an individual-
specific location corresponding to the region of greatest
activation during delay-period in the fMRI session. Larger
effects were observed when TMS was applied to the
individual hotspots than to the shared PFC region –
suggesting that these regions, which were heterogeneous
in location across individuals, nevertheless were playing a
more important role in supporting the working mem-
ory task.

General discussion

The preceding review supports the face validity of the
representational claims staked by PDP. There is at least
some evidence in at least some cognitive domains that
neural representations measured at the scale of fMRI
possess each of the four properties of distributed repre-
sentations articulated earlier. What are the implications of
these observations for our developing understanding of
representation in the mind and brain? In particular, what
can be concluded from the body of neuroimaging literat-
ure that has relied on univariate analyses, and how should
future efforts proceed?

First, it seems clear that claims of regional specialisa-
tion based on classical functional brain imaging – a face
area, a visual word-form area, a magnitude-estimation area
and so on – need to be revisited. The primary evidence for
such areas was obtained using univariate methods that are
capable of revealing where sets of anatomically contigu-
ous voxels individually show similar patterns of contrast
across groups of participants. The concern is not that such
findings are literally wrong or that they do not address
important issues; rather, it is that their significance for
understanding the neural bases of cognition is unclear
because the methods that were used are not also capable
of uncovering other types of neural structures, in particu-
lar distributed representations of the kind for which the
PDP framework provides a computational rationale. A
question for future research is whether the same results
will be obtained using methods that are capable of
detecting other types of representations as well. The
literature just reviewed indicates that methods suited to
finding distributed representations can yield quite different
answers about both the location and the nature of neural
representations, but much more research is required.

In general, perspectives on neural representation and
how it ought to be studied are shifting. As a field, we are
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scrutinising not only our methodological rigour (Vul et al.,
2009) but the capabilities of our techniques and what
inferences can and cannot be safely drawn from them
(Poldrack, 2006, 2011). A recent publication by Davis
et al. (2014) scrutinised the natural assumption that the
difference between univariate analysis and MVPA, and
lies primarily in MVPA’s sensitivity to high-dimensional
information. They clearly demonstrate via simulation what
we have argued in this review: univariate methods are
only sensitive to signal that meets the set of representa-
tional assumptions outlined in our introduction. Differ-
ences between univariate and multivariate analyses can
thus arise for many reasons, and not solely because
MVPAs are able to exploit high-dimensional information.
Consequently, after observing a difference between a uni-
variate and multivariate analysis, one’s data may remain
consistent with many representational hypotheses – such
differences do not, in themselves, indicate what the ‘right’
representational structure is.

A second important observation is that the multivariate
methods to which we have alluded are not themselves all
of a piece. Many different methods are currently being
explored in the literature, and each carries its own
underlying assumptions about what neural representations
might be like. As just one example, consider the popular
searchlight approach to multivariate pattern classification
discussed earlier (Kriegeskorte et al., 2006). In this
method, a ‘searchlight’ of fixed radius is centred on each
voxel in the brain; voxels within the radius are treated as
inputs to a multivariate pattern classifier; for each such
searchlight in the brain the associated classifier is trained
to discriminate different cognitive states. The classifier’s
cross-validation accuracy is stored in the voxel corre-
sponding to the searchlight’s centre, producing, for each
subject, an ‘information map’ that indicates where classi-
fication accuracy from associated searchlights exceeds
chance. These information maps are then typically sub-
jected to the standard cross-subject univariate significance
tests, with the goal of identifying contiguous sets of
voxels whose searchlights can be reliably decoded by the
classifier across subjects. As was illustrated in Figure 2,
this approach relaxes some assumptions of the standard
univariate approach – for instance, voxels are not treated
independently, but are considered in sets, so that each
classifier can decode information reliably distributed over
a searchlight even if the information is not reliably
expressed in each individual voxel. Likewise, the search-
light approach discards the assumption that elements of a
representation must all respond to their preferred stimuli
in similar ways. But the approach holds other assumptions
in common with univariate methods: for instance, it
assumes that the information of interest is distributed
locally at the scale of individual searchlights, and that it is
localised consistently across subjects. Other multivariate
methods, such as whole-brain ridge regression (e.g.,

Riggall & Postle, 2012), discard these assumptions but
adopt still others. Each such method, by virtue of its
underlying assumptions, is constrained in the kinds of
signal it is capable of detecting, just like the univariate
approach (Cox & Rogers, submitted). Consequently, each
method can potentially yield substantially different results
when applied to the same data. Indeed, the study by
Bulthé et al. (2014) and colleagues cited earlier has
already shown that the different methods do indeed lead
to quite different results in the search for neural repre-
sentations of numerical magnitudes. What then is the
researcher to do? Which method is ‘correct’?

One approach is to compare and contrast the results
yielded by different methods, as in several studies we have
discussed. Aided by a good understanding of each
method’s underlying assumptions, and hence of its blind
spots, such an approach can at least clarify what the data
actually show. For instance, in the study by Riggall and
Postle (2012), the contrast of multivariate and univariate
results makes it clear that fronto-parietal regions show
elevated delay-period activity without containing informa-
tion about the contents of working memory, whereas
occipital regions contain such information without show-
ing elevated delay-period activity. The contrast makes it
quite clear that the different regions are playing different
roles in the memory task, and it is not difficult to see how
such differences contribute to advancing theories about
the neural bases of working memory. It seems possible,
then, that simply laying the results of different analyses
side-by-side and understanding how and why they differ
might be an important advance.

Still, something about this strategy – always assess the
data using all available methods – seems unsatisfying. The
alternative is to tie the choice of methods to the question
being addressed, in this case, the nature of neural
representations. Given a theory of what neural representa-
tions are like, it can then be determined which methods
are suitable for testing the theory and alternatives to it.
This perspective is quite the opposite of that adopted in
much of the literature, where one typically begins with a
standard method of analysis and applies it to determine
what neural representations are like. If the standard
method is predicated on the wrong representational
assumptions, such an approach is likely to be misleading.

This is why we feel it is useful to begin to connect
methods for functional brain imaging more directly to the
PDP framework. The PDP assumptions about representa-
tion articulated earlier were not drawn from thin air – they
arise from a coherent theoretical framework for cognition
that has already proven highly successful at explaining
how cognitive phenomena can arise from neural processes
abstracted at a level comparable to that probed by brain
imaging. That is, the representational assumptions of PDP
have already been validated at the cognitive level (see
Rogers & McClelland, 2014 for a current review), so there
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is good reason to develop statistical methodologies that
begin with these assumptions. The new multivariate
methods that have emerged in the last 10 years are a clear
advance in this direction; the field awaits a deeper
understanding of their properties and the kinds of ques-
tions they can and cannot address.

Disclosure statement
No potential conflict of interest was reported by the authors.

Notes

1. There are of course learning algorithms, such as the self-
organizing map, that constrain anatomically neighbouring
units to respond to similar inputs, but neural networks
function just as well without such constraints.

2. Another possibility is that the tasks induce whole-brain
metabolic changes that are correlated with stimulus magni-
tude but not involved in the cognitive representation of
magnitude, an explanation that seems likely especially in the
case of pain perception.
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