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PhonologyReadingAcquisition,andDyslexia:
Insightsfrom ConnectionisiModels

MichaelW. Harm
Mark S. Seidenbeg

Universityof SoutherrCalifornia

The developmentof readingskill and basesof developmentaldyslexia were explored using con-
nectionistmodels. Four issueswere examined: the acquisitionof phonologicaknowledgeprior to
reading how this knowledgefacilitateslearningto read,phonologicabndnonphonologicabaseof
dyslexia, andeffectsof literacy on phonologicakepresentationComparedvith simplefeedforvard
networks, representingphonologicalkknowledgein an attractornetwork yieldedimproved learning
and generalization.Phonologicaland surfaceforms of developmentaldyslexia, which are usually
attributedto impairmentsn distinctlexical andnonleical processingroutes; werederived from
differenttypesof damageo the network. Theresultsprovide a computationallyexplicit accountof
mary aspect®f readingacquisitionusingconnectionisprinciples.

Phonologicainformationplaysa centralrole in learn-
ing to readand in skilled reading. Several corverging
sourcef evidenceindicatethatlearningto relatethe spo-
kenandwrittenformsof languagés acritical stepin learn-
ing to read (see Adams, 1990, for an extensve review).
Children’s knowledgeof the phonologicalstructureof lan-
guageis a good predictorof early readingability (Bradley
& Bryant, 1983; Tunmer& Nesdale, 1985; Mann, 1984;
Olson,Wise,ConnersRack,& Fulker, 1989; Shankweiler
& Liberman,1989)andimpairmentsin the representation
or processingf phonologicalinformation are implicated
in at least some forms of developmentaldyslecia (Ma-
nis, Seidenbeay, Doi, McBride-Chang& Peterson]1996;
Stanwich, Siggel, & Gottardo,1997). Use of phonolog-
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ical informationis notlimited to beginningreadersskilled
readersalsorely on this informationin identifying words
(Van Orden,Pennington& Stone,1990; Lukatela& Tur-
vey, 1994; Seidenbey, 1985; Jared& Seidenbeay, 1991;
Perfetti& Bell, 1991;Perfetti,Bell, & Delang, 1988)and
integratingwordswith sentenceontexts (Pollatsek]esch,
Morris, & Rayner 1992). Phonologyplays an important
role in working memory (Gathercole& Baddelg, 1993)
and may be particularly relevant to retaininginformation
aboutthe literal forms of sentencesvhile ambiguitiesare
resohed. A principal goal in developing modelsof word
recognitionis to explain how phonologicalinformationis
representedh lexical memoryandusedin readingandhow
anomalieselatedto therepresentationr useof phonology
giveriseto specificpatternof readingimpairment.

The presentesearchnvestigatedherole of phonolog-
ical informationin early readingand dyslexia. Our fo-
cuswason usingthe theoreticalframeavork developedby
Seidenbeg and McClelland (1989, hereafterSM89) and
Plaut,McClelland, Seidenbay, and Patterson(1996, here-
afterPMSP)to understandiormalandimpairedreadingac-
quisition. The initial applicationsof this framework were
to phenomenaelatedto skilled reading(SM89). We then
shavedhow it couldaccounfor formsof dyslexia obsened
in adultsfollowing brain injury (Plautet al., 1996). The
presentpaperrepresents further extensionof this frame-
work to encompasslevelopmentaforms of dyslexia. We
preseninew simulationsaddressingnormalanddisordered
developmentalphenomena.Our researchocuseson four
issues:

1. Phonologicalepresentationln orderto addressle-
velopmentalssuesve neededo deviseanapproacho pho-
nologicalrepresentatiothat wasan advanceover the rep-
resentationaschemesisedin previous modelsof reading.
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Whereagpreviouscomputationainodeldargelyfocusedon
adultperformancethecurrentwork focusesonhow phono-
logical representationdevelop,andhow propertiesof pho-
nological representatiomffect learningto read. This em-
phasisrequireddevelopinga moresophisticateanethodof
representingphonologicalinformationthanearliermodels
haddemandedjiventhekindsof questionghey addressed.
The simulationsdescribedelow explore the useof a pho-
nologicalrepresentatioanalogouso theattractometworks
that have beenusedin modelsof semanticrepresentation
(e.g. Plaut& Shallice,1993). Althoughnotafully general
accounbf phonologicaktructurethisrepresentatiomcor
poratessomeimportantrepresentationgrinciplesandit al-
lowed us to addresglevelopmentaissuesin considerable
detail. It alsoprovidesthe beginningsof a computational
accountof a variety of phonologicalphenomenauchas
catgyoricalperceptiorof phonemesalthoughthisis notthe
primaryfocusof theresearch.

2. Role of prior phonologicalknowledgein learning
to read.Childrenbring to thereadingacquisitiontaskcon-
siderableknowledgeof phonologicaktructurederivedfrom
experiencewith spolenlanguage.Thisis animportantas-
pectof thechild’s experiencehatpreviousmodelshave ig-
nored.For example,the architectureof the Seidenbeg and
McClellandmodelincludeda setof phonologicalunitsthat
would allow the network to representhe pronunciations
of words, but this representationid notitself encodevery
muchinformationaboutthestructureof Englishphonology
Similarly, the Coltheart,Curtis, Atkins, andHaller (1993)
modelis endaved with a way of deriving rulesgoverning
thecorrespondencdsetweergraphemeandphonemegut
this processs not constrainedy factsaboutthe phonolog-
ical structureof the language;hencethe modelcanlearn
rulesfor phonologicalsystemshat could not occurin hu-
manlanguagesBoth modelswerein effectlearningabout
phonologicaktructureatthe sameimethey learnedo map
betweerorthographyandphonology Thechild, in contrast,
alreadyknowsa greatdealaboutphonologyandmainly has
to learnhow orthographicrepresentationmapontoit. In
the simulationspresentedbelown, we addressetiow the ex-
istenceof prior knowledgeof phonologicalstructure—and
differencesn the quality of this knowledge—affectedlearn-
ing to read.

3. Basesof developmentaldyslexia. The third issue
we addressoncernghe basesf developmentaldyslexia.
The goalis to be ableto explain impairmentsin learning
to readin termsof anomaliesn the normalsystem.There
is now good evidencethat developmentaldyslexia occurs
in at leasttwo forms (Manis et al., 1996; Castles& Colt-
heart,1993; Murphy & Pollatsek,1994; Stanwich et al.,
1997).Thesdormsareanalogouso thesurfaceandphono-
logical subtypesf acquireddyslexia (PattersonMarshall,
& Coltheart,1985;Beauwis & Derouesnél979).Thesig-
naturedeficit of the surfacesubtypeis impairedreadingof
wordswith atypicalspelling-soundcorrespondenceex-

ceptions”suchasPINT andHAVE), whereaghe signature
deficit of the phonologicalsubtypeis impairedgeneraliza-
tion (i.e., pronunciationof nonwords suchas MAVE and
GLORP). Thereis considerableontroversyaboutthe bases
of thesedeficits, however. The standardnterpretationis
thatthesepatternsreflectimpairmentso separat@rocess-
ing routineg(the“routes”in thedual-routemodel,asin Cas-
tles & Coltheart,1993). The “nonlexical” pronunciation
mechanisnmusesrulesto translatefrom spellingto sound.
The"lexical” mechanisninvolvesaccessingword’s entry
in anorthographidexicon andusingthatto accessts en-
try in a phonologicalexicon. The dual-routetheoryholds
thatexceptionwordscanonly be readby the lexical route,
whereamnonwordscanonly bereadby therules. Thetwo
subtypef developmentatlysleia (andtheiranaloguesn
acquireddyslexia) areseenmasderiving from selectve dam-
ageto oneor the otherpronunciatiormechanism:surface
dysleia involves an impairmentto the lexical route, and
phonologicadyslexia the nonlexical route.

Ourapproactis different. We do notmodelwordrecog-
nition andpronunciationin termsof differenttypesof pro-
cessingnechanismthatapplyto differenttypesof stimuli.
Ratherourtheoryis statedn termsof computationgnvolv-
ing differenttypesof information(orthographyphonology
semantics).In this approachall typesof wordsandnon-
wordsare processedn the sameway: the presentatiorof
an orthographigpatternasinput initiatesthe spreadof ac-
tivation via weightedconnectionghroughoutthe network.
Below we shaw that, ratherthanderiving from damageo
differenttypesof namingmechanismshetwo subtypeof
developmentatyslexia canbe explainedin termsof differ-
enttypesof damaye to the lexical network. This account
alsoexplainsadditionalfactsaboutthesepatternsof devel-
opmentaldyslexia, includingthe predominancef “mixed”
casesn which both exceptionwordsandnonwordsare af-
fected.Thesesimulationsshav how specificpatternsof im-
pairedreadingcanarisefrom specifictypesof phonological
andnon-phonologicahnomalies.

4. Effectsof literacy on phonologicatepresentationin
thefinal simulationswe addressow the representationf
phonologicainformationmayitself beaffectedby learning
to read. Several studieshave provided evidencethatrepre-
sentation®f phonologyarealteredby knowledgeof alpha-
betic orthographiege.g. Morais, Cary, Alegria, & Bertel-
son,1979; Read,Yun-Fei,Hong-Yin, & Bao-Qing,1987;
Morais, BertelsonCary, & Alegria, 1986). The surprising
implicationof thiswork is thatliterateandilliterate individ-
uals have somavhat differentrepresentationef the struc-
ture of spolenlanguage.The modelsthatwe employedin
oursimulationsallowedusto examinethisissuebecaus¢he
weightson connectiongncodingohonologicainformation
werethemselesallowedto changen thecourseof learning
to read. The effectsof literacy on phonologicakepresenta-
tion could thenbe assessetly comparingthe representa-
tionsbeforeandaftertrainingonthereadingtask.
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1. Acquiring PhonologicaKnowledge

Our first goalwasto try to approximatethe child’s ac-
quisition of phonologicalknowledge prior to learningto
read. We constructech modelthat, like the child, was ex-
posedto phonologicaword formsandlearnedo represent
themin memory The mannetin which the network repre-
sentedhis informationallowedit to extractgeneralizations
aboutthe phonologicaktructureof English;in particular it
learnedaboutthe structureof phonemicsggments(i.e., that
they consistof clustersof phoneticfeaturesindaboutcon-
straintson the sequencesf phonemegi.e., phonotactics).
We presentestsof the modelthatassessedhatit haden-
codedaboutphonologicaktructure.This phonologicalep-
resentatiorwastaken to approximatea beginning readers
knowledgeof phonologyandwasusedin subsequennod-
elsthatlearnedo mapfrom orthographyto phonology

DQPOO@

Cleanup Units

Y
QBO@OO@OO@OO@

Phonological Output Units

Figure 1. Architectureof the phonologicakttractometwork.

Phonolamical Repesentation

The phonologicalrepresentatiorschemethat we em-
ployedhastwo principaldesignfeaturesFirst,it emplo/sa
distributedrepresentationf phonemesn which units cor
respondto phoneticfeatures. Second this representation
formedpartof thelargernetwork illustratedin Figurel, in
which all of the phoneticfeatureunits were connectedo
eachotherandto a setof phonologicakleanupunits,anal-
ogousto the semanticcleanupunits employed by Hinton
andShallice(1991)andPlautandShallice(1993). Therep-
resentationis slot-basedn the sensethat the input vector
correspondgo a sequenceof phonemesandso it inher
its someof the known limitations of slot-basedpproaches
(Plautet al., 1996). For example,the /b/ phonemein the
initial consonanslot is representedeparatelyrom the /b/
in the final consonanslot, and thereforewhat is learned
aboutthe phonemen one positiondoesnot automatically
carry over to the samephonemen anotherposition. Plaut
et al. (1996)termedthis the dispesion problem. It makes
thetaskof learningphonologicatepresentationsiorecom-
plicated,insofar asthe modelhasto learnto represensev-
eral/b/’s ratherthanjust one. However, this representation
hasother propertiesthat are more importantfor our pur-
poses.First, the interconnection®etweeninput units and
the cleanupapparatusllow the network to encodedepen-
denciesacrossslots. The slot problemis moreseriousin a

simplefeedforwardnetwork in whichthesekindsof depen-
denciesannotberepresentedtall. Secondthisrepresen-
tationallowsthemodelto capturehefactthatphoneme
differentpositionssometimegliffer phonetically Thefact
thatword initial voicelessplosives(e.g.,/p/,/t/) in English
are generallyaspiratedprovides a well-known example?
Finally, phonologicalcodeswere centeredon the vowel.
Vowels arethe primary sourceof variability in phonology
and in orthographic-phonlogicd correspondenceshus,
centeringon the vowel minimizedthe dispersionproblem
for thoseaspectof therepresentatiofor which it is most
salient. In summary the presentrepresentatiomsespho-
neticfeaturesn slotscorrespondingo phonemeshut min-
imizedthe dispersiorproblemby incorporatingdirectcon-
nectionsbetweeninput units, a set of cleanupunits, and
vowel-centering. Phonemesare representedy phonetic
featuresbut in contrastto standardlistinctive featurema-
trices(suchas Chomsly & Halle, 1968),the network can
encodadependencieacrosdeaturesandsegments.

Phonemesvere representedising a vectorof 11 real-
valuedunits,eachof which correspondetb a phoneticfea-
ture. The setof featuresand representationor individ-
ualphonemesveredravn from recentheorizingin phonet-
ics andphonology(Gorecka,1992; Steriade 1993). Units
could expressvaluesrangingbetween-1 to 1. Somefea-
tures,suchaslabial andpharyngeal werebinary; takingon
valuesof -1 and1. Others,suchasvoicewereternary al-
lowing valuesof -1, 0 and1. Thesonoantfeaturetook val-
uesalonga continuousgradient,representingn encoding
of the sonorityhierarchy A monosyllablevasrepresented
as6 of thesephonemeslots,in CCVVCC formation. The
monosyllablewas vowel centeredwith diphthongsoccu-
pying the middle two vowel slots. The secondof the two
vowel slotswas codedas an empty phoneme(all features
having a value of -1) if the vowel was not a diphthong.
For example thephonologicaform of theword BAT would
be /_bee_t_/ while the form of the word BLADE would be
/blejd /. Tablesl and2 summarizeéhe phonemesndfea-
turesused. The total representatioffior the phonological
form of a monosyllablewas 66 units, with 6 slotsof 11
units defininga phoneme Silentphonemesverecodedby
settingall featuregdo -1.

We found 95 uninflectedmonosyllabicEnglish words
that could not be representedh this template,specifically
thoserequiring 3 consonanphonemeseforeor after the
vowel (e.g.STREET, WHILST). Thesewordswereexcluded
for purely pragmaticreasons.The additionof leadingand
trailing consonanslotswould raisethe numberof phono-
logical unitsfrom 66 to 88. Thiswould increasehe sizeof
the phonologicacomponenfrom 6,996weightsto 11,264
weights, and significantly increasenetwork training time.
Giventhe large numberof simulationsdescribedoelaw, it

1suchallophonicvariationwasnotutilizedin thecurrentstudy
but is somethingo beinvestigatedn futureresearch.
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Tablel
Phonolmical Fegtuse Repesentation:Consonants
g >
~ (§ @ o
S &(§ s e » & & 2 S?O) & § S @s
§ § & s & © 5 ¥ s & &
S % ¢ ¥ F S & Q ¢ K & q
Ipl -1 1 -1 1 1 1 0 -1 1 0 0 pat
b/ -1 1 0 -1 1 1 0 -1 1 0 0 bat
1t/ -1 1 -1 -1 1 -1 1 -1 -1 1 0 top
/d/ -1 1 0 -1 1 -1 1 -1 -1 1 0 dog
Ik/ -1 1 -1 -1 1 -1 -1 -1 -1 -1 0 kite
g/ -1 1 0 -1 1 -1 -1 -1 -1 -1 0 give
1t/ -0.5 1 -1 -1 0 -1 1 -1 1 0 0 fit
Ivl -0.5 1 0 -1 0 -1 1 -1 1 0 0 vine
10/ -0.5 1 -1 -1 0 -1 1 -1 -1 0 0 with
18/ -0.5 1 0 -1 0 -1 1 -1 -1 0 0 the
Isl -0.5 1 -1 -1 0 -1 1 -1 -1 1 0 sit
Iz/ -0.5 1 0 -1 0 -1 1 -1 -1 1 0 jazz
/h/ -0.5 1 0 -1 0 -1 -1 1 -1 -1 -1 hat
Il -0.5 1 -1 -1 0 -1 0 -1 -1 0 0 shot
I3/ 0.5 1 0 -1 0 -1 0 -1 -1 0 0 beige
14/ -0.8 1 -1 -1 1 -1 0 -1 -1 0 0 cach
I/ -0.8 1 0 -1 1 -1 0 -1 -1 0 0 gin
m/ 0 0 1 1 1 1 0 -1 1 0 0 mop
n/ 0 0 1 1 1 -1 1 -1 -1 1 0 not
Iyl 0 0 1 1 1 -1 -1 -1 -1 -1 0 sing
Ix/ 0.5 0 1 0 -1 -1 -1 1 1 -1 -1 rat
n 0.5 0 1 0 -1 -1 1 -1 -1 1 0 loop
Iwl 0.8 0 1 0 0 1 -1 -1 1 -1 0 win
il 0.8 0 1 0 0 -1 0 -1 -1 0 1 yes

wasfelt thatthe costin trainingtime did not justify the mi-

nor benefitthatrepresentinghe additional95 wordswould

yield. Below we describea simulationusinga muchlarger
corpusof wordswhich showns thataddingthesewordsdoes
not createary otherproblemsor ourapproach.

Thephonologicahttractometwork wascreatedy con-
nectingall featureunitsto eachotherandto asetof cleanup
units (in effect a setof hiddenunits mediatingthe compu-
tationfrom the phonemeepresentatioto itself). Including
theseconnectionsallows the behaior of units to change
overtime; the phonologicalcomponenbecomes dynam-
ical systemwhosestatecan changeitself. Whentrained
appropriatelysuchsystemsandevelop attractorstates pr
basinsof attraction(Hinton& Shallice, 1991;Plaut& Shal-
lice, 1993). Suchbasinscanbe thoughtof asa surfacein
state-spacesuchthat statesneara fixed attractorwill be
drawn into thatattractorstate.ldeally, the entire66 dimen-
sional state-spacevould be characterizedy a landscape
of overlappingattractorbasins suchthatany of theinfinite
numberof stateghe network canfind itself in will resohe
to a phonemicallyand phonotactiallylegal end stateover
time.

The direct connectionsdetweenphonologicalunits al-
lowed the encodingof somesimple types of dependen-
ciesbetweerphoneticfeatures.For example,a givenpho-

nemecannotebothconsonantaindsonoran{seeTablesl
and2); if consonantak positive,sonorantmustbenegative,
andvice versa. This constraintcanbe encodedy a nega-
tive weightfrom the consonantaleaturewithin aphoneme
to thesonoranfeature forcing themto have oppositesigns
if they arebothnonzero.However, Englishphonologyalso
exhibits more complex dependenciethat cannotbe repre-
sentediy simpledirectconnectionsFor example,consider
therelationshipdetweerthe degreefeatureon thefirst two
phoneme®f asyllable. As summarizedn Table3, thereis
a constraintagainstboth degreefeaturesbeingsetto 1, al-
thoughthey canbothbe-1, or they canhave oppositesigns.
This contingeng cannotbe encodedy directconnections
betweerthe two unitsandis the kind of phenomenothat
motivatesthe useof networkswith alayerof so-callechid-
denunits (Rumelhart,Hinton, & Williams, 1986). When
hidden units are utilized in an auto-attmctor, meaninga
setof unitsthatmaptheir activationfrom themselesonto
themselesovertime, they arecalledcleanupunits because
they assistthe unitsin “cleaningup” the outputactivation
values(Plaut& Shallice,1993),thatis, coercingthe pat-
ternsinto alegal configuration.

In the phonologicalattractornetwork depictedin Fig-
urel, eachunit’'sdynamicscanbe describedhsanonlinear
squashedgumof its input. The hyperbolictangentactiva-
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Table2
Phonolgical Fegture RepesentationMowels
g >
*~ & o )
S &(§ s e » & & 2 S?O) & § $ SQ
§ § & s & & 5 ¥ I s & &
Q> o o r J Q9 N R & K ¢ &
il 1 -1 1 0 0 -1 0 -1 -1 0 1 heed
hl 1 -1 1 0 0 -1 0 -1 -1 0 -1 hid
lel 1 -1 1 0 -1 -1 0 -1 -1 -1 1 paid
el 1 -1 1 0 -1 -1 0 -1 -1 -1 -1 head
2/ 1 -1 1 0 -1 -1 0 1 -1 -1 1 hat
fal 1 -1 1 0 -1 -1 -1 1 -1 -1 -1 hot
/ol 1 -1 1 0 -1 -1 -1 -1 1 -1 -1 paw
o/ 1 -1 1 0 -1 -1 -1 -1 1 -1 1 toad
vl 1 -1 1 0 0 -1 -1 -1 1 0 -1 took
fa/ 1 -1 1 0 0 -1 -1 -1 1 0 1 boat
Ial 1 -1 1 0 -1 -1 -1 -1 -1 -1 -1 hut
Table3 1Y
Distributions of Degree Featuesin ConsonantSlotsPre-
cedingthe Vowel o5
DegreeC1 DegreeC2 Example Legal
-1 -1 _RAT Yes = 4 5 5 i = X
-1 1 _PAT Yes
1 -1 BRAT Yes 6.5
1 1 BPAT No
-1

tion function (hereaftertanh’) waschosenyratherthanthe

more traditional logistic function, becausdt hasa num-

ber of propertiesthat make it attractive for this applica-
tion. The hyperbolictangent(seeFigure 2) hasthe famil-

iar s-shapehut its input/outputcurve passeghroughthe

point (0,0). The moretraditionallogistic activation func-

tion passeshrough(0,0.5),meaninganinput of 0 to a unit

resultsin an outputof 0.5. With the tanhfunction, in the

absenceof ary input the units producea zero output, al-

lowing for ambient;jnactive states Further thetanhactiva-

tion functionpreseresthesignof theinput: negative input

meangheoutputwill benegative,andpositveinputmeans
the outputwill be positve. This makesit easierto read
weightsas correlationshetweenunits. Eachphonological
unit hasanauto-connectionaweightsetto 0.75andfrozen
to thatvalue. The activationof the phonologicalunits(pos-
itive or negative) tendsto drop off towardszeroover time,

in theabsencef ary externaldriving input.

Training Corpus

A setof 3,123 monosyllabicwords was chosenfrom
various sources,ncluding lists usedin previous research
andanonlinedictionary Propemounsandmorphological
variationson words(suchasplurals,pasttensegtc.) were
excludedin orderto keepthe size of the training corpus

Figure 2. Activationcurve for hyperbolictangentfunctionused
in simulationsy = tanhj.

manageable As with the complex onsetwords described
previously, the decisionto excludetheinflectedwordswas

purelyapragmaticonerelatedto computingtime. Onp. 14

we describethe resultsof anadditionalsimulationdemon-
strating that the model can be trained on almost 8,000

monosyllabicwordswithout creatingany additionalprob-

lems.

Eachword was assigned frequeng derived from its
frequeng of presentatiotin theWall StreetJournalCorpus
(Marcus,Santorini,& Marcinkiewicz, 1993). This corpus
is muchlargerthanthemorecommonlyusedBrown corpus
and provides more robust frequeng estimates. This fre-
queny wastransformednto a probability of presentation
by alogarithmictransformation(seePlautetal., 1996,for
adiscussiorof log frequengy compression):

log((f;/100) + 1) )
logm/100

Here f; is the frequeng of word i, mis the frequeng of
the mostfrequentword in the corpus(THE, frequeng 2.7
million occurrences)Wordswith a probability p; lessthan
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0.05weresetto 0.05. Log frequeng was usedto facili-
tate training; a much larger amountof training would be
neededto give a reasonablecoverageof all words. For
example,in the Wall StreetJournalcorpus,the word THE
occursapproximately50 thousandtimes more often than
theword I1SLE, and 16 thousandimesmoreoftenthanthe
word czAR. Using probabilitiesof presentatiorthatarea
linear function of word frequeng would be computation-
ally intractablewith online learning. The total sumof the
WSJfrequencie®f thewordsusedin thetrainingcorpusis
approximately21 million. If we wish anitem with a count
of 1, suchasFILCH, to be 90% likely to appearat least
once,we would needto sampleapproximately50 million
words. Using log compressegrobabilities,the numberof
necessargamplegiropsto about22 thousand.

Training Method

We thentrainedthis network onthe phonologicakodes
for the wordsin the corpus. The goal of training was for
thenetwork to developarepresentationf thephonological
structureof Englishmonosyllablesin reality, childrende-
velopsuchrepresentationis the courseof learningto com-
prehendand producespolen languagetaskswe were not
preparedo simulate. We thereforeuseda simplified pro-
cedurein whichthe modelmerelyhadto learnto represent
andretainphonologicakcodesovertime. On eachtrial, the
phonologicalepresentationf the word wasclampedonto
thephonologicalnits. Theseunitsweregivena hardwired
tendeng to decaytheir activation valuesover time. The
network’s task was to retain the input patterndespitethe
tendeng for unit activationsto decay This taskpressures
the network to form dynamicalattractorsthat embodythe
statisticalregularitiesin thetrainingset. Weightadjustment
was performedon the differencebetweennetwork output
andthe phonologicaform of thetarmgetword.

Initially, all weightsin the phonologicalattractornet-
work wereassignedgmallrandomvaluesbetween0.1and
0.1. The exceptionsto this werethe 66 connectiondrom
eachof the phonologicalunits to themseles, which were
frozenat 0.75. Units thereforehada tendeng to retaina
fractionof their previousactivationlevel, andto experience
agraduaratherthanimmediatedeclinein theiroutputlevel.
Figure3 shavstheoutputof unitsovertimewith initial val-
uesof 1, 0.6,—0.6 and—1, assumingno otherinputto the
units. Theunits’ activationeventuallydropsoff to zero.

The network was trained using the backpropagation
throughtime training algorithm (Williams & Peng,1990).
The outputof eachunit at a giventime is a function of the
sumof its aggreateactivation, accordingto the following
formulas.

f(x) )
ZJ Wi, j Otj_l 3)
j€

P
|

1.0

Unit Output
S o o
N /”

©
o

P

o
o
w

Time

Figure3. Dynamicsof a unit with auto-decayPositve andneg-
ative valuesdecayto zeroovertime.

Hereo! denotegheoutputof uniti attimet, X! refersto the
inputto thatunitattimet, f is theactivation(“squashing”)
function which mapsthe input of a unit to its output,U is
the setof all units, andw; ; denotesthe weight from unit
j toi. Eachunit, then,takesthe weightedsum (weighted
by w) of the outputsof otherunitsonthe previoustime tick
t— 1, andthisbecomesgheinputx to thatunitfor tick t. The
outputof thatunit, o is theresultof applyingthe activation
function f to theinputvaluex.

In training,anerrormeasuré& wasdefinedasin Equa-
tion 4, equalto the sum of squareddifferencesbhetween
the outputvectoro andthe tamget vectord, summedover
all time ticks T andall units | accordingto the formula
E=75!5{(c —d)2 Minimizing the error E essentially
meansminimizing the distancebetweenvector o and d,
sinceE is the squareof the euclideandistancebetweeno
andd.

Thenetwork wasrunfor a presetnumberof time ticks,
with eachunit updatingits activation at eachtime slice
accordingto the weightsand activationsof all otherunits
for the previoustime slice accordingto Equations2 and 3.
Then the derivative of the error E with respectto each
weightw in the network wascomputedasperthe standard
backpropagatioequationdRumelhartet al., 1986). Each
weightwasthen adjustedby changingits value according
to thenegative of the errorderivative, multiplied by a small
constantcalled a learningrate (denotedy). Early piloting
revealedthatalearningratep = 0.001wasappropriateand
thisvaluewasusedthroughoutrainingof thephonological
network.

The network wastrainedusing online learning. Dur-
ing training,a“zero errorradius”of 0.1 wasused,meaning
that errorslessthan 0.1 were countedas zero. The acti-
vation functionstypically employed in connectionistinet-
workscannotreachtheir extremalvaluesexceptin thelimit
of aninfinitely largeinput. The“zero errorradius”is used
to avoid overtrainingthe network, which cannever exactly
obtainthe extremalvalues.
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Wordsweresampledprobabilisticallyfrom thetraining
setaccordingto their probability value p, ascomputedby
Equationl. Onaverageawordwith p = 0.5is selectedy
thenetwork abouttwice asoftenasaword with p = 0.25.

To trainthe network, thefollowing algorithmwasused:

1. A wordwassampledandomlyfrom thetrainingcor-
pusaccordingo thefrequeng distribution (Equationl).

2. For time tick 0, the 66 phonological units were
clampedwith the appropriateraluesfor thatword.

3. The network was run for 4 ticks, with units un-
clamped.

4. For ticks 2-4, the output of eachphonologicalunit
was comparedwith the actualvalue of the word, andthe
differencewaspropagatedbackwardsthroughthe network,
generatingerrorgradientdor eachweight.

5. The weightswere updatedaccordingto their error
gradient.

6. Continuewith stepl.

Becauseeach unit had a positve auto connection
weight, it tendedto retainthe sign of its initial value. Be-
causethe auto connectionweights were frozen at a low
enoughvaluethattheunits’ activationwould dropoff, each
unit neededncreasednput activationfrom otherunitsand
from the cleanupunitsin orderto reachthe target output.
Training was haltedafter a million trials, whenit wasob-
senedthatthe sumsquarecerrorwasnot decreasing.

Results

Several testswere devisedto assesghe natureof the
phonologicatepresentationthiatthemodeldeveloped.The
generalstratgly wasto quantify the ability of the modelto
retainandrepairdegradedor incompletephonologicarep-
resentationsandto characterizehe attractordynamicsthe
modelhadformed.In latersectionsve will relatethequal-
ity of theseattractorsto specificphenomenabsened in
studiesof speeclperceptionsuchasphonemicrestoration
effectsand cateyorical perceptionof consonantsBecause
ourfocusis onreadingwe have notexhaustvely examined
themodel’s capacityto simulatesuchspeectperceptioref-
fectsor attemptedo simulatea broadrangeof data. We
canshaw, however, thatthenetwork encodesufficientpho-
nologicalinformationto produceseveral of the effectsthat
have beenobsenedin humanssubjectto implementational
limitations suchasthe restrictionto monosyllables.These
resultssuggesthatit would befruitful to furtherexplorethe
relevanceof this kind of architectureo speectperception
phenomena.

Pattern Retention The first method of assessinghe
phonologicalattractorsinvolved observinghow well the
model performedon the task on which it was trained:
retaining phonological patternsover time. A nealest-
neighbormeasue wasusedto assesshe correctnessf the
phonologicaloutput. For eachof the 6 output phoneme

100——==
90f .
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70F '

60 v
"""" Correct
Incorrect, Legal
---- lllegal

50}

40F .
30} o
200 7 .
0

Percent of Training Set

1K 10K 100K 1M
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Figure 4. Patternretentionaccurag over the courseof phono-
logicaltraining.

slots,the 11 featuresverematchedagainsthe setof exist-
ing phonemesThe phonemehatwasclosestin euclidean
distanceo theactualoutputwasconsideredhe outputpho-
nemefor thatposition. A word wasscoredascorrectif all
of the outputphonemesverethe correctones.

A second,more stringentmeasurewas also usedto
identify illegal phonemesThefeaturaloutputof themodel
canbecorrectby the nearesheighbormeasurdout still not
correspondo alegal combinationof featureqfor example,
an outputthatis featurally closestto /k/, but is not conso-
nantal).An outputwasthereforescoredaslegal if andonly
if thereexistsaphonemen whichall 11 outputfeaturesare
within 0.5 of thatphonemesrepresentation.

Figure4 summarizeshe evaluationof the training set
over the courseof training. At asymptotejust 11 itemsof
the original 3123wereincorrect,andthe numberof illegal
phonemesiroppedo 10.

PatternCompletion We next assessethe network us-
ing apatterncompletiontask.Informationwasdeletedrom
an input patternand we obsened the extent to which the
modelcouldfill this gapgivenwhatit encodedboutpho-
nologicalstructure.This testwasconductedor all itemsin
thetrainingset.Eachof the66 featuresvastakenin succes-
sion, andits valuewasleft unspecified.All otherfeatures
for thegivenwordwereclampedo theirappropriatevalues.
Thenetwork wasallowedto runfor 4 ticks, asit wasduring
training. Thenthe differencebetweenthe unclampedea-
ture’svalueandits targetwasmeasure@ndrecorded.This
wasdonefor all 66 featuresover all 3123words. This test
assessethe capacityof the network to coercean incom-
plete phoneticpatterninto onethatis phonemicallylegal
within thetargetlanguage.

The averagemagnitudeof the error e for eachfeature
j was computedover all 3,123wordsin the training set:
e = S2120(i); — d(i);|/3123. The resultsare shovn in
Figure5 (top). In generalthe erroris quite low for most
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Figure 5. Top figuredepictsthe sumsquarecerroron patterncompletiontask,by feature.Features
in eachphonemeslot, in order are: sonorantconsonantalioiced,nasal degree labial, palatal,pha-
ryngeal round,tongue andradical. Bottomfigure shavs the conditionalentrofy of thesefeatures.

featuresaveraging< 0.1 for mostitems.Recallthatduring
traininga zeroerrorradiusof 0.1 wasused,soit is not sur

prising that mary valueshover near0.1; the network con-
siderstheeffective,trainableerrorin suchacaseto bezero.
Sincethe activations(andtargets)for eachunit rangefrom

-1to 1, therangeof possiblesquarecderrorsis 0 to 4, soan

errorof 0.1is quitelow. Thus,for amajority of featuresthe
network fills in the correctvaluebasedon the neighboring
featurego a high degreeof accuray.

A numberof featuresdo have high error values,how-
ever. Thevoicedfeaturesin the 2nd and5th slot arehigh,
asarea clusterof vowel featuregelatedto placeandman-
ner of articulation. The explanationfor theseeffects can
be seenby examiningthefeaturalrepresentationsf all the
phonemes.The voicedfeatureis the only onethat distin-
guishedp/ from /b/; also/t/ from /d/, /k/ from /g/, andsev-
eralotherminimal pairs.Givenawordform with thevoiced
bit unspecifiedthe network hasno way to know whatthe
correctvalueis. In short, the voiced featureis relatively

unconstrainedby its neighboringfeatures.In contrastthe
consonantaleatureis totally constrainedy the otherfea-
turesin a sgment. It is thereforenot surprisingthaterrors
arehigheronthelessconstrainedtems.

To demonstratéhis morerigorously theconditionalen-
tropyfor eachfeaturewascomputed Theentropy H(X) of
adistribution X is definedas:

H(X) =3 p(x)log, p(x) (4)

XEX

SeeCover and Thomas(1991) for derivation and discus-
sion. Theconditionalentrogy, or conditionaluncertaintyof
distribution X, giventheernvironment?y’, is definedas

HX[9) == 3 p(y) > p(xly)logzp(xly)  (5)

yey xeX

For eachfeaturein the phonologicaloutputarray the con-
ditional entroypy of thefeaturewascomputedelative to the
valuesof the 10 other featuresin its phonemeslot. The
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entropy was computedover all wordsin the training set,
weightedby thefrequeng of eachword.

Figure5 (bottom)shawvs a plot of the conditionalen-
tropy, or uncertainty of eachunit in the phonologicalout-
putin unitsof bits. As expectedthevoicedfeaturedor the
consonanslotsshav high uncertainty The consonantin
slot 1 and 6 shaw lessuncertaintybecausehey areempty
more often thanthe inner consonantsand the featuresof
emptyslotsareeasilypredictabldrom its ernvironment.

Visually, the matchbetweenthe meansumsquarecer
ror and the conditionalentroyy is quite good. A Pearson
correlationover the two setsof numbersrevealeda good
match: r = 0.88, t(64) = 15, p < 0.0001. Thus, errors
in the network approximatethe conditionaluncertaintyin
thetraining set. This resultis not surprisinggiventhatthe
residualerror of a network trainedusingthe sumsquared
errormeasur@pproximateshe conditionalvarianceof the
trainingset(Bishop,1995).

We next examinedthe kinds of errorsthatweremade.
Giventhat the models inaccurag is a function of the un-
certaintyof afeature|s it the casethata different,but legal
phonemas alwaysproduced?The featurecompletiontask
wasrepeateadsabove, but the outputwasassessedccord-
ing to whetherthe outputphonemevascorrector incorrect.
Incorrectpatternswere further classifiedas eitherlegal or
illegal,usingthemethoddescribedn theprecedingection.

Productionof incorrectphonemesvas infrequent,av-
eraging8.4%over all featuresandtraining setitems. The
productionof anillegalphonemeoccurredor 1.13%o0f the
featuresandtraining setitems,so 13.5%(1.13%/8.4%) of
theincorrectitemsresultedn anillegal phonemeThefea-
turethatproducedhe mostillegal phonemesvhenleft un-
specified(14%) was the pharyngeafeatureon the vowel
phoneme. The conditional entropy of featureswas also
correlatedwith the tendeny for thosefeaturesto produce
illegal patternswhen unspecified:r = 0.72, t(64) = 8.3,
p < 0.0001.

Evenin ambiguougrnvironmentqseeFigure5, bottom)
thenetwork wasmorelik ely thannotto producethecorrect
word;the errorratenever exceededb0%. Whenthe correct
word wasnot producedthe next mostlikely outcomewas
creatinganovel,legalword (e.g.PONE, whenthetargetwas
BONE). The productionof illegal patternsvaslargely lim-
ited to the placeand mannerof articulationof the vowel.
Thesefeaturesare the onesthat are the mostunderdeter
minedby their environmentqFigure5, bottom).

Attractor Basins The phonological network has
formedwhat are called attractorbasins. The main ideais
thatif oneconsiderghe 66 phonologicafeaturesasform-
ing a high dimensionakpacewith eachfeaturerepresent-
ing onedimension the trainednetwork consistsof a setof
attractorstatesin this space. A pointin this spacecorre-
spondingo thephonologicaform of aword will besubject
to the network dynamics,andpulledin variousdirections

within the space. Thoseforceshave the effect of limiting
theregionsin which the network cansettle,suchthatnoisy
ordegradednputis verylikely to becoercednto acoherent
pattern.

To visualizethe 66 dimensionakpaces of courseim-
possible However, it is possibleto provideasmallexample
thatcanbevisualized.Suppos@neonly considergwo fea-
turesof the 66; the roundandradical featureswhich will
be manipulatedwith respecto the vowel. Theword /kat/
providesanervironmentin whichthesewo featurexanbe
manipulatedIn the contet of theword /kat/, the four ex-
tremalvaluecombination®f thesetwo featuresdefinefour
phonemesOf thosefour, only 3 arelegal phonemeén the
/k_t/ context. A combinatiornof -1 and-1 gives/kat/ (CuT),
1 and1 gives/kot/ (COAT), 1 and-1 gives/kat/ (CAUGHT),
and-1,lisillegal.

To exploretheattractorswithin the phonologicakpace,
all featuredor theword /kat/ wereclampedto their actual
valuesexceptthe round andradicalfeaturesof the vowel.
Thesefeatureswere systematicallysetto valuesranging
from -1 to 1 in incrementsof 0.1, giving 400initial states
for aword. For eachof thesestatesthe network wasrun,
andthetwo featuresn questionwereallowedto drift. For
eachof the 400 combinationsof values,the statesof the
two featuresveresampledafterrunningfor two ticks. The
directionin which eachfeaturemovedwasrecorded.This
createda two dimensionalectorfield, asdepictedin Fig-
ure 6 (arrov magnitudesarescaledby a constanfor read-
ability). Thefigureillustratesthe directionthatthe phono-
logical statemoveswhentherestof theform of thewordis
held constant.Figure6 shavs thatthe network pulls awvay
from the illegal stateof -1, -1 andtoward a nearbylegal
configuration.Theinfinite number(subjecto machinepre-
cision) of initial statesdefinedby the planein Figure6 be-
comescoercednto only 3 final states:the threelegal cor-
nersof theplane.

The attractorbasinscanbe shavn in threedimensions
by computingfor eachpointon thetwo dimensionalattice
of Figure 6, the distancea point movesover 4 time ticks
(by whichtimeit hassettled).Figure7 depictsthe attractor
basinsfor the vectorplot of Figure 6. The metaphorbe-
ing usedhereis thata pointin the dynamicspaceis like a
ball thatrolls alongthe surfacesformed by the attractors.
Pointsinitially atstableattractorqthethreecornersdo not
changetheir state,andarehenceshavn at z= 0. Hilltops
shav the divisions betweenbasins,or regions the points
roll into: pointsnearthe COAT cornerroll into thatcorner;
pointsalongthemiddletroughroll into the CAUGHT corner
while pointsnearcuT roll there.

To examinethesensitvity of theseattractorgo thelocal
ervironment, the experimentwas repeatedwith the word
/keet/ usedastheinitial state.Thisis identicalto the previ-
oustrial, exceptthatthe palatalfeatureof thevowel is setto
0 insteadof -1. The effect of the differentvalueof palatal
is thatsuddenlyroundingis illegal; in English,front vowels
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Figure6. Phonologicahttractordepicting3 legalphonemeslerivedfrom com-
binationsof two featuresroundandradical.

cannotberound(althoughtherearelanguage whichthis
is allowed, suchas German). Whenpalatalis 0, rounding
is -1 andradicalis -1 theresultingphonemas /z/ (rhymes
with cAT). For a configurationof 0, -1, 1 the resultis /¢/
(rhymeswith PET).

Figure 8 depictsthe differing attractorsfor the same
featureqcontrastwith Figure6). In this case the network
shunsary positive valueontheroundfeature correctlycap-
turing thegeneralizatiorthat palatal=0Oprohibitsround=1.

The inputsto the roundfeaturewere examinedto see
how the network wasableto capturethis generalizationlt
turns out that the input to the roundingfeature,averaged
over all wordsin the corpus,is negative. This is largely
dueto thefactthatroundingis off moreoftenthanon; its
meanvalueover all wordsis -0.4,andthe medianis -1. In
the ervironmentof theword /ket/, theinput from all other
phonologicalunitsandthe cleanupunitsis -2. The weight
from the palatalfeatureto the roundingunit is -2, suchthat
whenpalatalis -1, it cancelgheambientdispositionto turn
off this feature.The network hasthusimplementeahefol-
lowing “rule”: if palatalis O, roundingmustbe-1. If palatal
is -1, roundingcanbe eitheron or off. Importantly the net-

work hasdonesousing“soft” attractorssothatintermedi-
atevalueswhich the network never experiencesn training
still tendto getpulledinto alegal state.

In summary the network representsphonological
knowledgein termsof attractorsin statespace. We have
shavn how this knowledge can be usedto completepat-
ternsthataremissinga featureto repairor completepartial
or noisyrepresentationd\e provide additionalanalyse®f
the models phonologicalrepresentationbelon. We now
turnto areadingmodelthatlearnsto maporthographiaep-
resentationsntothis structuredohonologicaknowledge.

2. Learningto Read

Thequestioraddresseth thissectionconcerngherole
of prior phonologicaknowledgein learningto readaloud.
Giventhe extensie behaioral evidencelinking phonolog-
ical representationteadingacquisition,and dyslexia, we
expectedthat having this knowledgein placewould facil-
itate learningthe mappingbetweerspellingand pronunci-
ation. Thesesimulationsalsoprovide a closeranalogueo
the child’s experiencethanhadearlierword readingmod-
els, permittingmorevalid comparisonbetweermodeland
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child performance.

The simulationsreportedbelow involve comparisons
amongthree conditions. In the Trained Attractor condi-
tion, the weightsthat resultedfrom the pretrainingproce-
dureprovidedtheinitial stateof the readingmodel. In the
UntrainedAttractor condition, the samenetwork architec-
ture andtaskwereused but the phonologicakttractorpart
of the network wasinitialized with smallrandomweights.
This model had the capacityto encodehigherorder de-
pendencieamongfeaturesbut unlike the TrainedAttrac-
tor model, it did not have this knowledgein placeat the
startof learningto read. The third, Feedforvard condition
utilized a simplefeedforward network; the connectionde-
tweenphonetideatureunitsandthecleanumpparatusvere
eliminated,leaving only connectionsrom orthographyto
the hiddenunits, andfrom the hiddenunits to the phono-
logical units. This modelhada more limited capacityto
representlependencieamongfeatures. Theseconditions
allowed us to examinethe relative importanceof having
phonologicalknowledgein placeprior to learningto read
comparedo simply having the capacityto learnandrep-
resentsuchknowledgein the courseof learningto read.
Basedon previous findings we expectedthe feedforward
network to performmore poorly, particularlyon nonword
generalizationpecauseof its restrictedcapacityto repre-

sentphonologicaktructure.

Architecture

Thearchitecturausedin the TrainedandUntrainedAt-
tractorconditionsis illustratedin Figure9. Theinputlayer
wasa setof 208 units representinghe spellingsof words.
Thesewerefully connectedo anintermediatdevel of 100
hiddenunits, whichin turn werefully connectedo output
representatiornwhichwasthe phonologicakttractometde-
scribedabove. In the Feedforvard condition,the connec-
tionsbetweerphonologicalinitsandthecleanupunitswere
eliminated.In eachcase the modelwastrainedto mapthe
spellingof aword ontoits pronunciation.

Eightslotsof 26 unitseachwereusedo representvords
up to 8 letterslong, with eachslot correspondingdo a let-
ter position and eachunit representingone letter  Words
werevowel-centeredwith the first vowel of a word repre-
sentedn slot4, andarny consonantgrowing outwardfrom
thevowel. The presencef a givenletterwithin a slotwas
indicatedby settingthatunit to the valueof 1 andall others
to 0.

Thereis considerablénefficiency in this orthographic
representatiorf-or example therearevowel unitsin theon-
setandcodapositionsthatarealwayssetto 0 because&ow-
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Figure 8. Phonologicakttractorfield, in differentphonologicalenvironment.
Palatalis 0, yielding differentdynamicghanin Figure6.

elscannotoccurin thesepositions.Corversely the conso-
nantunitsin the vowel positionsarealwaysoff. Therepre-
sentationwas chosento be assimpleas possible building
in verylittle of thestructureof Englishorthographybeyond
whatwasimposedby the basicarchitecture.

Training Method

Thebackpropagatiothroughtime algorithmwasagain
used,with online learningandwords selectedor training
usingthe sameprocedureas describedn Sectionl. The
sametraining corpususedin the phonologicatrainingwas
usedfor readingtraining. After aword waschosenthe or-
thographiaunitswereclampedwith thepatterncorrespond-
ing to the spelling of the word for 6 time ticks. Unit ac-
tivationswere updatedfor 6 time ticks. On the final tick
the outputof the phonologicalunits was comparedo the
word’s phonologicatarget. As is standardor theBPTT al-
gorithm,the discrepang betweerthe outputandthetarget
over eachoutputunit is injectedinto the outputunits of the
network. Thiserrorfor eachoutputunitis thenusedo com-
putetheerrorfor all unitswhichareconnectedo theoutput
unit: the errorfor a hiddenunit, example,is a function of

its contribution to the error for the outputunits. The error
thateachhiddenunit accumulatess thenusedin the same
way to determinethe erroron all input units. Similarly, the
cleanupunits in the phonologicalattractornetwork accu-
mulateerror basedon the error of the outputunitsthey are
connectedo. In this sense;blame” for the overall erroris
propagatedackwardthroughthe network from the output
units. Once“blame” is assignedor eachunit, weightscan
be updatedby changingthemslightly in the directionthat
would reducethe error. The errorsarethendiscardedand
the cycle repeatswith the selectionof a new word. The
effectof thistraining proceduras thattheweightscometo
take on valuesthatminimizethe errorfor eachword in the
trainingset.Regular, rule governedtemsexertasimilar ef-
fectontheweightsto theextentthattheirtargetsandinputs
aresimilar, while exceptionspull theweightsin a different
direction. For example,the weightsfrom the orthographic
rime of wordslike GAVE, BRAVE andsAVE all have a simi-
lar phonologicalimetarget,sotheirinfluenceonthevalues
of the weightsis similar. The patternsof activity over the
hiddenunits that thesewords createwill have somesimi-
larities,dueto their overlappingspellings,andsomediffer-
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encesdueto their differing onsets.The similaritiesin the
hiddenunitactivities, coupledwith similaritiesin theoutput
targets,producerule-like behavior. For the exceptionword
HAVE, in contrastthe network mustacquiresensitvity to
thepresencef theH in theernvironmentof AVE in orderto
overridethe default behaior createdby the regular neigh-
borhood.

Piloting revealedthatalearningratep of 0.005wasap-
propriatefor thereadingcomponentsf themodel(thecon-
nectiondromtheorthographido hiddenunits,andfrom the
hiddenunits onto the phonologicalrepresentation)Lower
valuesresultedin muchlongertraining times, and higher
valuesled to instabilitiesin the network. This value is
higherthanthe valuethatwasusedin the phonologicalat-
tractor(0.001). Initial studiesuseda learningrateof 0.001
throughoutthe model,andwhile taking longerto train (on
the orderof severaldaysperrun), thesesimulationsexhib-
ited qualitatively similar performanceo oneswith a higher
learningrate.

One otherimportantfeatureof the training procedure
wasthe interleasing of two typesof trainingtrials. In the
phonologicalcquisitionphasedescribechbove, the model
wastrainedon a phonologicaretentiontask.We now want
themodelto learnasecondask,mappingrom orthography
to phonology However, we alsowantthemodelto retainits
knowledgeof phonologicalstructure. Training the model
exclusively on the readingtaskwill resultin weightsthat
areoptimalfor this taskbut not necessarilfor the phono-
logical retentiontask. Blocked training on differenttasks
is the condition that givesrise to what has beentermed
“catastrophicinterference”(McCloskey & Cohen,1989).
Undertheseconditions.training on the secondaskresults
in afailureto retainall of whatwaslearnedin connection
with the first task. The solutionto this problemis simply
to interleave training on the two tasks(seeHetherington
Seidenbag, 1989). Forgettingon thefirst taskis avoidedif

therearea few additionaltrials of this type duringtraining
on the secondask. This interlearing of tasksis alsomore
realisticwith respecto thechild’s experiencewhichis not
strictly blocked by task. The child acquiresxtensize pho-
nologicalknowledgethroughexposureo spolenlanguage;
however, their experiencewith speechdoesnot endonce
readinginstructionbegins.

Thus,training on the readingtaskwasinterleared with
additional trials on the phonologicalretentiontask. We
will referto the latter task asthe “listening” task because
it involvesencodingandretaininga phonologicalpattern.
On eachtraining trial, a randomnumberwas computed.
Basedon this randomnumber thattraining cycle was ei-
thera readingor listeningcycle. On 80% of thetrials, the
modelwastrainedon the readingtask; on 20%the listen-
ing task? On readingtrials, the network was trainedas
describedabore. Onlisteningtrials, the modelwastrained
asin Sectionl. Hence,the phonologicalweightshadto
assumevaluesthat would facilitate performanceon both
tasks.

Lengthof Training. Eight simulationruns, represent-
ing differentsubjectswereconductedor eachof thethree
conditions. On eachrun the weightsfrom orthographicdo
hiddenunits and from hiddenunits to phonologicalunits
wererandomizedo valuesbetween—0.1 and0.1. For the
TrainedAttractor condition,the phonologicahetwork was
trainedasin Section2 for eachof the eightruns. The Un-
trainedAttractorconditionhadrandomweightsassignedo
the attractornetwork, while the Feedforvard network had
no attractornetwork. In all networks, the initial weights
andthe exactorderof presentationsf the wordswerede-
terminedby the initial randomnumberseed. Within each
training condition, all of the eight runs were identical to
eachother exceptfor the initial seed. Resultspresented
below, unlessotherwisenoted,representhe meanperfor
manceof the 8 networkswithin eachcondition.

For eachrun, the Trained Attractor network was pre-
sentedwith 1 million wordsduringthe phonologicalrain-
ing phaseasin Sectionl. It wasthentrainedon 10 million
words during the readingphase. Since 80% of the trials
during the readingphasewerereadingexamplesand 20%
wereinterleaved listeningexamples,eachrun exposedthe
network to atotal of 3 million listeningtrials and8 million
readingtrials. The UntrainedAttractor network was not

2This ratio of readingto listeningtrials is higherthanwould
be experiencedby a child. We endedup with this ratio after ex-
plorationsof a variety of ratiosyieldedtwo findings: first, using
20% listeningtrials was sufficient to prevent significantunlearn-
ing of phonology;secondusinga larger percentag®f listening
trials hadlittle effect on masteringeitherthelisteningor reading
tasks.We thereforeusedthe 80-20ratio in orderto keepthetrain-
ing timesrelatively low. Essentiallythe sameresultsobtainif the
proportionof listeningtrials is increasedbut the network takes
longerto learn.
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subjectedo phonologicapretraining;it simplywastrained
on 10 million wordsin the readingphase with the above
distributions of readingand listeningtrials. The Feedfor
wardnetwork wastrainedfor 10 million readingtrials.

We useda large numberof training trials during each
phasglisteningandreading)in orderto beableto examine
asymptoticlevels of performance.As will be seenbelow,
the resulting learning curves were highly nonlinear with
rapidlearningduring the first million or soword presenta
tionsandslowerlearningthereafter

Results

Wefirst describaheperformancef the TrainedAttrac-
tor nets,andthenprovide comparisonso the UntrainedAt-
tractorandFeedforvardconditions.

Wbrd Performance The outputthat eachmodel pro-
ducedfor wordsin thetrainingsetwasevaluatedusingtwo
criteria. First, eachphonemén the word wasassesseds-
ing thenearesheighbottestdescribedreviously. Thepho-
nemein thetraininginventorythatwasclosestpy euclidean
distance to the outputof the network was determinedor
eachposition. Thesephonemesverethencomparedo the
target phonemes. Phonemesvere judged correctif they
wereidenticalto thetargetor if they weremembersf pre-
definedequivalenceclasse®f phonemesTherationaleun-
derlyingtheequialenceclassess thattherearesomevaria-
tionsin theproductionof certainphonemeshatparticipants
could producebut would not be detectable.Theseclasses
were/s/ and/a/ (e.g.coT andCAUGHT), fow/ and/o_/ (e.g.
thedifferencein somedialectsof Englishbetweerthevow-
elsof DOE, whichcanhave atrailing /w/ soundandDOME,
which doesnot), and/ej/ and/e_/ (the later beinga shorter
more clippedversionof /ej/). All phonemesn a word (or
nonword) hadto beclosesto thetargetonesfor theitemto
bescoredascorrect.

In addition, the featuresfor eachoutputphonemehad
to correspondo a legal phonemen the training set; that
is, therehadto be a phonemein the training setin which
eachoutputfeaturewaswithin 0.5 of thevaluefor thatpho-
neme.Thenearesheighborcriterionaffordsthe possibility
thatthecomputedutputmightbecloserto thecorrectpho-
nemethanary othereventhoughtheparticularcombination
of featuresdoesnot correspondo ary phonemelmposing
the secondscoringcriterion ensuredhat suchtrials would
bescoredasincorrect.

Figurel0 (left) shovsthemeanperformancef eachof
thethreenetworksonthetrainingsetitemsovertime. There
is virtually no differencebetweenthe Trained and Un-
trainedAttractor networks. The Feedforvard network per
formsabit morepoorly, reachinghesameasymptotidevel
of performanceasthe attractometworks, but moreslowly.
At asymptotethetrainedattractometworks average®8%
correcton the training set. The majority of errorswere
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on low frequeng exceptionwords (e.g.,CHOIR) or ortho-
graphicallyunusuallow frequeng words (e.g., MYRRH).

Theseresultsare in accordwith the resultspresentedy
Seidenbeg andMcClelland(1989)andthe behaioral data
reportedby WatersandSeidenbey (1985)andothers.

Nonwod Genealization The models’ capacitiesto
generalizeo novel itemswereassessedsinga setof 364
nonwords. The 86 pseudwordsfrom Glushlo (1979),Ex-
perimentl, and 156 of the 160 items from McCannand
Besner(1987) were combinedto form 239 items (three
lessthanthe sumof thetwo sets because¢hreeitemswere
duplicatedin the Glushlo andMcCanné& Besnerstudies).
An additional 125 items were generatedoy taking exist-
ing word bodiesandreplacingthe onsetto form a nonword
(asin Seidenbey, Plaut, PetersenMcClelland,& McRae,
1994)# For mostitems, therewas only one correctpro-
nunciationallowedwhenscoringthe network’s output. For
someitems, if the network producedone of two possible
outputsit was scoredas correct(e.g.the nonword bomBs
couldbe pronounceckither/dam/ asin BOMB or /dom/ as
in comB). This scoringis consistentvith behaioral data
reportedby Seidenbeg et al. (1994), who found that the
two most common pronunciationsof the more than 500
nonwords in their study accountedfor over 90% of par
ticipants’ responsesThe developmentof nonword gener
alization performancds summarizedn Figure 10 (right).
At asymptote,the Trained Attractor networks scoredan
averageof 79% of the nonword set correct,as measured
by the stringentcriterion and 88% correctby the morelax
nearest-neighbaneasurePerformancef the Trainedand
UntrainedAttractor networks wasagainquite similar, with
only slightly pooremperformancentheUntrainedAttractor
networks earlyin training. However, the Feedforvard net-
works exhibited muchworseperformanceon the nonword
setthroughoutraining.

Replicationwith a Larger Corpus As notedearlier, the
trainingcorpususedin thesesimulationancludedmostbut
notall monosyllabiavordsin English. Two classe®f items
wereexcluded: onesthat did not fit the CCVVCC phono-
logical template(e.g., STRING) and inflectedwords (plu-
rals suchasBooK s andtensedverbssuchasBAKES and

3Fouritems(B|NJE, FAIJE, JINJE, WAIJE) wereexcludedbe-
causethey containedthe letter J two positionsafter the vowel.
This letterin this slotis not seenin thetraining set. As such,the
modelcould never gettheseitemscorrect. This problemreflects
aninherentimitation of theslotbasedepresentatioachemdsee
PMSPfor discussion)This problemwould not ariseif the model
hadbeentrainedon polysyllabicwordswhich provide coverageof
thisgap(e.g.,BANJO, CONJURE). Thesevordsweretheonly ones
from the McCannandBesnerand Glushlo studiesthat exhibited
this problem.

4Theentiresetof nonvordsis availableat http://siva.usc.edu/
"mharm/paper&dyslec.psyres /nonword.stim. pdf
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Figure 10. Comparisorbetweerthenormalreadingmodel,thefeedforvardmodel,andtheinitially untrained
attractormodelon thetrainingset(left) andnonword generalizatiorfright).

BAKED). Theseitemswereexcludedfor a pragmaticrea-
son,theneedto keepnetwork trainingtimeswithin reason-
ablebounds.However, the exclusionof thesewordsraises
guestionsaboutthe generalityof the resultswe have pre-
sented. One questionis whethersimilar levels of perfor
mancecanbeachievedwith alargernumberof wordsto be
learned A secondjuestionis whethemwordswith complex
onsets(such STRING) or codas(suchas BURST) present
ary special challenges. Finally, the propertiesof En-
glishinflectionalmorphologycreatecomplex orthographic-
phonologicaimappingsfor thesewords. In boththe plural
and pasttense,the phonologicalrealizationof the inflec-
tion is conditionedby the previousphonemeln bothBuDS
and Books, for example,the plural morphemeis spelled
with s. However, whetherits pronunciationis voiced (as
in BUDS) or urvoiced(asin BOOKS) depend®n the voic-
ing of the precedingphonemeawhichis itself inconsistently
cuedby the orthography Thusboth MouTH and TENTH
endin TH but differ in voicing; althoughbothform theplu-
ral by addings in the orthographythe inflectionsare pro-
nounceddifferently, The mappingsbetweenspellingand
pronunciatiorfor thesewordsarethereforerathercomplex.
In summarythewordswe excludeddiffer in somerespects
from the wordsin the training corpusandraiseadditional
challengedor our approachhatneedto beaddressed.

To explore thesequestions,we conducteda replica-
tion simulationusinga muchlargercorpus.Monosyllables
wereextractedirom the CELEX electroniccorpus(Baayen,
Piepenbrock& van Rijn, 1993). All itemsfitting a CC-
CVVCCCtemplatewereusedyielding 7,839words.Most
of the additionalwordsareinflecteditems. The phonolog-
ical network wasexpandedrom 66to 88 unitsto accommo-

datethe larger template,and additionalorthographicunits
wereaddedto fit longerwords. Aside from thesechanges,
no otheralterationsveremadeto the model’s architecture,
representationsr trainingregime.

After 10 million trials, the modelhadcorrectlylearned
99% of the training set, as scoredby the strict criterion.
Nonword generalizationimproved: the model correctly
pronounce®4%of thebenchmarkonwordsetby thestrict
criterion,and90%by themorelax one. Theoriginalmodel
had difficulty pronouncingsome nonwords that had few
neighborsin the original training set; for example, it pro-
ducederrorson nonwordsthat look like plurals, suchas
SNOCKS and PHOCKS. The larger model, which contains
mary plurals,hasno difficulty with theseitems. Thesere-
sultsdemonstrat¢hatincreasinghe sizeof thetrainingset
not only doesnot createproblemsfor the model, it facili-
tatesperformanc®nnonwordsby providing broadeicover-
ageof the spaceof orthographiandphonologicapatterns.

Performanceon words with comple< onsetsor codas
and on inflected words is summarizedin Table 4. For
comparisorwe alsoexaminedthe performancef a strictly
feedforward network on theseitems. Both attractorand
feedforwvardmodelsachievzedhighlevelsof performancen
thesewords, with a slight advantagefor the former. The
models’ capacitiesto generalizewere examinedby test-
ing themon nonwordswith plural or pasttenseinflections.
Here the attractornetwork performedsignificantly better
thanthe feedforward network. Theseresultsareconsistent
with theconclusiorthatthe attractorstructures relevantto
learningcomplex spelling-soundmappings;however, the
learningof the larger corpusproceededvithout complica-
tion. The larger model doestake significantly longer to
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train, however, andso the smallermodeland corpuswere
usedin subsequergimulations.

Discussion:TheReadingModel

The simulationsshowv that the central findings from
SM89 and PMSPreplicateusing an outputrepresentation
that is an attractornetwork employing phoneticfeatures.
Thereweretwo importantotherfindings. First, the Attrac-
tor networks yielded betterperformancehanthe Feedfor
ward network, but the advantagewas almostentirely spe-
cific to nonword generalization. This resultis consistent
with the earlier finding that the SM89 model performed
betteron wordsin the training setthanon generalization.
If the taskis merelyto learnthe pronunciationsof a set
of words, a feedforward network is sufiicient (cf. SM89).
However, beingableto pronouncenonwordsrequiresthe
capacityto combinesubleical orthographic-phonogical
unitsin novel ways. Achieving human-like performancen
this task requireshaving a more structured,componential
representatiomf phonologicalinformationandthe corre-
spondencebetweerorthographyandphonology This ad-
ditional capacitycanbe achiezedin two ways. Oneis by
building additionalstructureinto the orthographicor pho-
nological representationthemseles. That was the path
taken by PMSR whosephonologicalrepresentatiomelied
onanextrinsically-determinedrderingof the phonemesif
this knowledgeis not built into therepresentatiorthenthe
network architecturétself mustallow it to beencodedThis
capacitywasprovidedby theattractorarchitecturexplored
here.

The secondmportantfinding wasthatalthoughthe at-
tractor architecturewas necessaryor achiezing adequate
nonword performancetherewaslittle differencebetween
the Untrainedand Pretrainedconditions. The Pretrained
modellearnedslightly fasterbut both modelsrapidly con-
vergedon very similar levels of performanceThus,it was
not necessaryo have knowledgeof phonologicalstructure
in placeprior to trainingonthereadingtaskbecaus¢hisin-
formationcouldberapidly pickedup in the courseof train-
ing on this task. The model’s architecturenustallow pho-
nologicalstructureto berepresenteth acomponentialvay
but giventhe high degreeof redundang exhibited by natu-
ral languagghonologythis informationcanbeacquiredat
the sametime asknowledgeof orthographic-phonlogical
correspondences.

The fact that the Pretrainedand Untrained networks
yielded similar performancecontrastswith results that
we presentedn Harm, Altmann, and Seidenbeg (1994).
That studyalsoexaminedthe effectsof prior phonological
knowledgeon acquisitionof spelling-soundknowledgeand
found that pretrainingon phonologyyielded a significant
improvementin performance.However, in that studywe
did not interleave readingand listening trials. The Pre-
trainedmodelperformedbetterbecauseherewaslessun-
learningof phonologicalstructureduring the readingtask.
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In the simulationsreportedabove, this advantagefor the
pretrainednodelwasobviatedby theinclusionof theinter
leavedlisteningtrials.

In summary thesesimulationssuggesthat having an
architecturethat permits the encoding of dependencies
amongfeaturesandphonemess critical to achieving ahigh
level of readingskill, particularlythe capacityto generalize
to novel instances.Childrennormally acquirethis knowl-
edgen thecourseof learningto usespolenlanguagendso
it isin placeprior to theonsetof readinginstruction.Thisis
likethePretrainedAttractorconditionin our simulations It
is interestinghatthe UntrainedAttractorconditionyielded
similar performancéo thePretrainedondition,insofarasit
suggestshat having the capacityto representertaintypes
of knowledgeis moreimportantthan actually having this
knowledgein place prior to reading. However, the Un-
trainedconditiondoesnotcorrespondo anythingthatcould
occurin reality; the situationin which the child is not ex-
posedo phonologicainformationuntil readinginstruction
begins never occurs. The Untrainedconditionis informa-
tive becauset suggestshat phonologicalstructurecanbe
rapidly learnedfrom examplesbut it is not analogougto
arnythingin achild’s experience.

It shouldbeapparenthatthetrainingprocedurghatwe
usedonly capturedsomevery generakharacteristicsf the
child’s actualexperiencein learningto read. Thesesimu-
lations, like earlierones,useda proceduren which words
were probabilisticallyselectedfor training basedon their
frequenciesof occurrencein adult English. Readingin-
structionis quite different: childreninitially learnto read
smallvocahulariesof wordsthat expandover time. More-
over, childrenin at leastsomeclassroomge.g.,onesem-
phasizing‘phonics” methodsareprovidedwith additional
training that emphasizesimilarities betweenwords with
respectto subword units suchas onsetsandrimes. They
alsoreceve explicit training in the pronunciationof par
ticular lettersandletter combinations.None of this is in-
corporatedn the muchsimplermethodwe useto train our
models.Two pointsshouldbe noted.First, thereis nothing
in our approachhatprecludesstructuringthetraining pro-
cedurein morerealisticways;indeed,the modelsprovide
an interestingway to examinewhetherparticularways of
introducingwordsto childrenwould yield more rapid ac-
quisition. This is animportantareafor futureresearchpne
that could provide insightsthatwould be usefulfor educa-
tors who planinstructionalcurricula. Secondthe method
thatwe usedin trainingthe modelsis probablynot the op-
timal one (for children or for models). Teachergpresum-
ably structurereadinginstructionin specificwaysbecause
it facilitateslearningandwe would expectthe samething
to occurin our models.Being morerealisticabouttraining
would allow more detailedcomparisongo childrenin the
earlieststageof learningto read. It would probablyallow
ourmodelsto learnmoreefficiently aswell.
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Table4
Larger Training CorpusResults
% Correct
Word Class Type Example N Attractor FeedForward
Plural /sl CATS 798 99 95
Izl BUGS 1045 98 96
PastTense /d/ BUGGED 724 98 20
1t/ BAKED 599 99 94
Third PersorSingular /s/ BAKES 229 99 99
Izl BEGS 307 99 98
Comple Onset STREET 211 100 97
Coda WORLD 704 98 85
Nonword Plural /sl BAIPS 20 95 75
Iz/ GLEWS 20 95 90
Nonword PastTense  /d/ POVED 20 85 60
It/ BAXED 20 90 50

3. DevelopmentaDyslexia

Developmentaldyslexia is the failure to acquireage-
appropriateeadingskills despiteadequaténtelligenceand
opportunity to learn. Whereasacquiredforms of dys-
lexia areobsenedin premorbidlyliterate adultsfollowing
braininjury, developmentatlyslexiais obsenedin children
learningto read,apparentlyasa consequencef congenital
anomalies Our goalis to explain differentpatternsof dys-
lexic behavior in termsof differenttypesof impairmentgo
the simulationmodelthat affect the courseof acquisition.
We also attemptto link theseforms of simulatedimpair-
mentto evidenceconcerningpossibleconstitutionalor ex-
perientialfactorsthatlimit childrens performance.

The causesof developmentaldyslexia have beenthe
subjectof considerablelebatesxtendingover mary years.
In the recent past, attention has primarily focusedon
impairmentsin the representatiorand use of phonolog-
ical information as the proximal cause(seelLiberman&
Shankweiler1985; Adams,1990; Farmeré& Klein, 1996,
for reviews). Learningto readinvolveslearninghow writ-
ten symbolsrepresenthe soundsof language. Children
who cansoundout words (either overtly or covertly) can
then matchthemto words known from speechproviding
a kind of self-teachingnechanisn{Jorm& Share,1983).
The training procedurein our networks approximateghis
self-teachingprocessthenetwork generateaphonological
codefor aletterstringandit is thencomparedo theveridi-
cal phonologicalcodethat providesthe basisfor calculat-
ing the errorusedto adjustthe weights.On trials whenthe
child hascorrectlysoundedut a word, this teachingfeed-
backis self-generatetty comparingthe computedcodeto
aword known from speech.Translationfrom orthography
to phonologyalsopermitsthe child to recognizevordsthat
have not beenseenbeforeandto learnthe pronunciations
of new words.

Thereis strongevidencethat individual differencedn

therepresentatiomanduseof phonologicalinformationare
relatedto level of readingachiezement(Bradley & Bryant,
1978,1983; Mann, 1984; Lundbeg, Olofsson,& Wall,
1980; Wagner& Torgesen,1987). Pre-readersvho have
developedmoresegmentalrepresentationsf phonological
structure,as revealedby “phonological avarenesstasks
suchas repeatinga spolen word with a single phoneme
deletedshaw higherlevelsof readingability in latergrades
(Share Jorm,Maclean & Matthewns, 1984; Adams,1990).
Impairmentsin the developmentof suchsegmentalrepre-
sentationgmight then be the causeof dyslexia in at least
somechildren.

This account,which is widely acceptedamongread-
ing researchersleaves two importantissuesunresohed.
First, whatis the natureof the deficit that givesriseto im-
pairedphonemiaepresentationsivlany studieshave estab-
lishedthatdyslexia is associateavith poorperformancen
tasksthatrequiremanipulatingphonemiaepresentations
working memory A few studieshave attemptedo estab-
lish causalinks betweerpoorphonologicatepresentations
andimpairedreadingacquisition(e.g. Bradley & Bryant,
1983). However, the natureof the information processing
deficit that givesrise to phonologicalimpairmentsis not
clear Attentionhasrecentlyfocusedon the hypothesighat
impairmentsin phonologicalrepresentatiomre secondary
to “temporal” processingleficits(Tallal, 1980;Tallal et al.,
1996; Merzenichet al., 1996). The processingf speech
involvesperceving smalldifference@mongrapidly chang-
ing signals. Tallal and othershave provided evidencethat
thecapacityto processrief and/orrapidly changingacous-
tic stimuli is impairedin somechildren. Tallal's hypothesis
hasgenerated¢onsiderablénterestbut is alsocontroversial
andthefocusof ongoingresearchOneproblemis thatthe
exactnatureof the“temporalprocessingleficit” is unclear;
mary studiesproviding evidencefor sucha deficit utilized
comple tasksthat involved both perceptualind memory
componentsmakingit difficult to determinewhatkind of
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impairmentled to poor performanceA relatedquestionis
whetherthe deficit is specificto speector reflectsa more
generalproblemthat also occursin other modalities(Di
Lollo, Hanson,& Mcintyre, 1983; Chase& Jenner1993;
Galalurda& Livingstone,1993). Finally, the evidencefor
deficitsin speechperceptionis strongestin childrenwho
exhibit broaderimpairmentsn the useof spolenlanguage
(JoanisseManis,Keating,& Seidenbeg, 1998).

The secondmportantquestionis, how doesanimpair-
mentin phonologicakepresentatiomterferewith learning
to read? Phonologicaldyslexics are not equallyimpaired
in all aspectof word reading. Previous theorieshave not
explainedhow deficitsin phonologicalrepresentatiogive
rise to the specificpatternsof behaioral impairmentthat
areobsenedin thesechildren. Why are certainaspectof
readingaffectedandnot others?

We addressetheseissuesby introducingimpairments
in the representatiomnd processingf informationin the
phonologicalattractor The principal result was that the
mainimpactof theseimpairmentsvason generatingoho-
nological codesfor unfamiliar letter strings (honwords).
Thisis importantbecausémpairednonword readingis the
signaturedeficitin the behavioral patterntermeddevelop-
mentalphonologicaldyslexia (Temple& Marshall, 1983;
Castles& Coltheart,1993). Thus the model provides a
computationalink betweerphonologicaimpairmentsand
specificaspectof dyslexic reading. The simulationsalso
providesomesuggestieleadsaboutpossiblebasedor pho-
nologicalimpairmentsaandwhethertheseimpairmentswill
alsoaffect speectperception Onepuzzleaboutthe phono-
logical deficit hypothesids that mary dyslexics who per
form poorly on “phonologicalawvareness’tasksappearto
have normal speechperceptionand production. It is not
clearwhy a phonologicalimpairmentwould not affect the
useof spolenlanguageaswell. Our simulationssuggest
that a phonologicalimpairmentthat is not severe enough
to interfere with basic aspectsof speechperceptioncan
nonethelessave a significantimpacton readingacquisi-
tion. With a more severe phonologicalimpairment, per
formanceon both readingand speechperceptiontasksis
affected.

A secondtypeof dysleia. Althoughthe evidencethat
phonologicalinformationplaysimportantrolesin learning
to read,skilled reading,anddyslexia is compelling, several
recentstudieshave corvergedon the conclusionthatsome
readingmpairmentsarenotcausedy phonologicabeficits
(Castles& Coltheart,1993; Murphy & Pollatsek,1994;
Manis et al., 1996; Stanwich et al., 1997). Thesestudies
identifieda subgroupof dyslexics whoseword recognition
was significantly belov age-appropriatéevels but whose
performanceon nonword readingwas not. Castlesand
Coltheart(1993)and Manis et al. (1996) referredto these
childrenas “surfacedyslexics” This term was originally
appliedto casesf acquireddyslexia in whichthe patientis

moreimpairedon readingexceptionwordsthannonwords
(e.g. Pattersoretal., 1985). Thetermwasextendedto the
developmentalsurfacedyslexics in the above two studies
because¢hey too weremoreimpairedin readingexceptions
than nonwords. Thus, phonologicaland surface dyslexia
arecomplementarypatternsn which eitherexceptionword
or nonword readingis moreimpaired. This doubledissoci-
ationis classicallyinterpretedvith the dual-routemodelas
arisingfrom separatémpairmentdo thelexical or nonlexi-
calroute.

Differencesbetweenthe subtypesof dysleic children
areillustratedby the summarydatafrom the Manis et al.
studypresentedn Figure1l. Dyslexic participantgmean
age 12.4) who were readingat aboutthe 4th gradelevel
were comparedo groupsof same-age@ndyoungernor-
mal readersDyslexics wereidentifiedassurfaceor phono-
logical dyslexic on the basisof discrepanciebetweenex-
ceptionand nonword reading,using the following proce-
dure. Levelsof exceptionword andnonword readingwere
obsened in samplesof same-agedormal readers. Sur
facedyslexic participants(N = 15) were definedasthose
childrenwhoseexceptionword readingwaslower thanex-
pectedgiven their level of nonword reading,basedon the
regressionof nonword scoreson exception word scores
for the normalreaders.Corversely phonologicaldyslexic
participants(N = 17) were childrenwhosenonword read-
ing waslower thanexpectedgiventheir level of exception
word reading. The surfacedyslexics’ performanceclosely
matchedthat of youngernormalreadersan termsof over
all level of performanceand both groupsread exception
words more poorly than simple nonwords. Phonological
dysleics’ performanceavas quite different. Their level of
exceptionword readingwas lik e that of youngernormals
but they weremuchworseat readingnonwords. Thus, al-
thoughboth surfaceandphonologicaldyslexics performed
morepoorlythansame-agedormalreadern bothexcep-
tionsandnonwords,thesurfaceparticipantsvererelatively
more impaired on exceptionwords and the phonological
dyslexics onnonwords.

The term “surface dyslexia” is not very informative
aboutthe natureof thesechildrens’impairmentor its un-
derlying cause. Suchchildrenhave beenlabelledsurface
dyslexic becaus¢hey aremoreimpairedonexceptionghan
nonwords.However, thisfocusonimpairedexceptionword
readingoverlookstwo prominentaspectsof their beha-
ior. First, mostof thesechildrenareimpairedon both ex-
ceptionsandnonwordscomparedo normalreadersof the
sameage. Although surfacedyslexia is often describedas
a “selective” impairmentin exceptionword readingthese
childrensimpairments typically notlimited to this type of
word. Secondthereadingperformancef the“surfacedys-
lexic” childrenin boththe Manisetal. andStanwich etal.
(1997) studieswasindistinguishabldrom that of younger
normal readers,whereasthe performanceof the phono-
logical dyslexics was quite different. Beginning readers,
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Figure11 Datafrom Manisetal. (1996),bothdysleic groupsexhibitedimpairmenton bothexceptionsand
nonwords, but phonologicaldysleics shaved a greaterimpairmenton nonword performanceandthe surface
dyslexics shaved a greaterimpairmenton exceptionword performance Phon= phonologicaldysleics; Surf
= surfacedyslexics, Sn= same-agedormals,Yn = youngemormals.

like “surface” dyslexics, are poorerat readingexception
words than soundingout nonwords. Insofar astheir per
formanceon both typesof stimuli quantitatvely matches
that of youngernormals,the surfacedysleics canbe said
to bedevelopmentallydelayed Becausehey exhibit agen-
eraldevelopmentateadingdelayratherthana specificim-
pairmentin readingexceptions,we suggesthat the term
“readingdelayed’is moreaccuratehan“surfacedyslexic”
andwe will useit throughoutthe remainderof this article
exceptwhenreferringto earlier studiesor specificclaims
of the dual-routemodel. In contrast,phonologicaldyslex-
ics exhibit a patternof performancehatis notseenn good
readersat ary age. In particulat their nonword readingis
extremelypoorgiventheirlevel of exceptionword reading.

Manis et al. (1996) provided additional evidencethat
thesearedistinctsubtypeof dyslexia with differentcauses.
This evidencederivedfrom performancen two validation
tasks,phonemepositionanalysisand orthographicchoice.
Theformerinvolvesrepeatingaword or nonword andiden-
tifying the positionof aphonem¢de.g.,“what soundcomes
beforethe/t/ in /skwapt/”). Thelatterinvolvesidentifying
the correctspelling of a word, with a pseudohomophone
asfoil (e.g.,RANE vs. RAIN). The phonologicaland sur
facedyslexics alsoexhibiteda doubledissociatioron these
tasks: phonologicaldyslexics wereimpairedon phoneme
position analysisbut not orthographicchoiceand surface
dyslexics performedin the oppositeway. The studiesby
Stanwich et al. (1997) and Murphy and Pollatsek(1994)

yieldedsimilar results. Takentogether thesedatastrongly
suggesthattherearetwo distinctpatternsof impairedread-
ing with differentcauses.

Manisetal. (1996)alsoexaminedvariability amongthe
individualswithin eachgroupin orderto determinevhether
ary of the participantsxhibitedtruly selectve impairment
in the readingof exceptionsor nonwords. The dual-route
model attributesthe surfaceand phonologicalsubtypesto
impairedacquisitionof the lexical and nonlexical reading
mechanismsrespectiely. The model thereforepredicts
thattherecould be childrenwho arenormalin readingone
typeof letterstringandimpairedontheother thatis, “pure”
caseswith truly selectve impairmentsatherthan“mixed”
patternsin which both exceptionsand nonwords are im-
paired,but onemorethantheother

In general,the participantsidentified as phonological
dysleics in the Manis et al. studywereimpairedon both
nonword and exceptionword readingcomparedto same-
agednormalreaders.Defininga “pure” caseof phonolog-
ical dyslexia asonein which the participants performance
on exceptionwordswaswithin a standardieviation of nor-
mal agematchedchildren, but nonword performancevas
one standarddeviation or more below that of the normal
childrenresultedin the identificationof 5 pure phonolog-
ical dyslexics (outof 17). Their data,alongwith meansfor
thesameagednormalcontrols,areshavnin Table5. These
5 participantsvereamongthe leastimpairedof the phono-
logical dyslexic participantsand scoredrelatively well on
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Table5
The“Pure” Phonolgical Dysleics from the Manis et al.
Study

Phonological

Participant Exception Nonword Test

122 76 65 83

124 67 72 96

138 69 67 83

147 72 72 92

514 65 54 95
MeanSN 75(12) 89(9) 87(10)
MeanPhonDys  49(15) 49(10) 63(20)

Note Valuesshawn arepercentcorrect. Standarcdeviationsare
shavn in parenthesisSN = sameagednormalparticipantsPhon
Dys = phonologicalyslexic participants.

Table6
The“Pure” SurfaceDyslexicsfromtheManisetal. Study

Participant Exception Nonword
101 47 80
139 25 80
148 47 84
149 40 83
1506 47 83
MeanSN 75(12) 89(9)
MeanSurfDys 32(11.6) 72.7(10.4)

Note Valuesshawn arepercentcorrect. Standarcdeviationsare
shawvn in parenthesisOf the 5 pure casesall but 1 wereamong
theleastimpairedof the surfacedyslexics.

thephonemealeletiontest.

Five “pure” surfacedyslexics (out of 15) werefoundin
the Manis et al. study; thesechildrenwere within 1 stan-
dard deviation on nonword readingbut at least1 standard
devition belonv normalon exceptions. Their dataare sum-
marizedin Table6. All of the “pure” caseswerelessim-
pairedin nonword readingthanthe averageof the surface
dyslexic group,andall but onewerelessimpairedon ex-
ceptionword readingthanthe group. Thus,in a study of
51 dyslexic children,10 wereidentifiedas“pure” subtype
casestheseweremildly impairedchildrenwho happened
to fall just below the cutoff criterionin readingonetype of
stimulusbut not the othet

To summarizethe Manis et al. studyand otherrecent
researctsuggestgshat thereare at leasttwo forms of de-
velopmentaldyslexia. In the phonologicalsubtype,per
formanceis belonv age-&pectedlevels on both exceptions
andnonwords, but is worseon nonwords;this impairment
appearsto be secondaryto deficits relatedto the repre-
sentationor processingdf phonologicalinformation. The
performanceof the childrenin this groupdoesnot resem-
ble that of youngernormal readersbecauseheir level of
nonword readingis so poor given their level of exception
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word reading.In thereadingdelaysubtype performances

alsobelov age-epectedevelsonbothexceptionsandnon-
words, but is relatively worseon exceptions. Their over-

all performancepatternclosely resembleghat of younger
normalreaders. Truly selectve impairmentsin which the
child is impairedin readingone type of letter string but

normalon the otherarerareandtendto be associatedvith

mild deficits.We next considethow currentmodelsof word

recognitioncanaccountor thesedata.

Theoriesof DevelopmentaDyslexia

The dual-routemodeltakesthe surfaceand phonolog-
ical subtypesasstrongevidencefor the two namingmech-
anismghatit entails. The lexical routeis the only onethat
cangeneratgronunciation®f exceptionwords. The non-
lexical routeis the only one that can generatepronuncia-
tionsof nonwords. Thereforeanimpairmentn thelexical
routewill yield poorexceptionword performancédut leave
nonword namingunafected.An impairmentin the nonlex-
ical routewill havethe oppositeeffect.

Themodelthatwe have beendevelopingsinceSeiden-
berg and McClelland (1989) doesnot explain thesepat-
ternsin termsof damageo separatesubsystemshat pro-
cessxceptionwordsandnonwordsbecausé¢herearenone:
words and nonwords are processedising the sameunits
andweightedconnectionsOur approachs insteado view
thesepatternsasthe resultof differenttypesof damageo
this system.By hypothesispnetype of damagéehasa big-
gerimpacton exceptionword readingandanotheron non-
words. Below we presentsimulationsexhibiting theseef-
fects. This approacto explainingthe impairmentss con-
sistentwith the ideathatthey arisefrom differenttypesof
neurobiologicalnomaliesput doesnot requirethe auxil-
iary assumptiorthatthereareseparatéexical andnonlexi-
calroutes.

Our accountof thesephenomendiffersfrom thedual-
routetheoryin four majorrespects.

1. The natureof the impairmentin phonologicaldys-
lexia. Colthearts view is thatit dervesfrom impairedac-
quisition of the grapheme-phonemeorrespondenceules
that are the basisof the nonlexical route. Becausehese
rulesarenot adequatelynasteredthe child mispronounces
nonwords. This accountignoresthe factthat suchchildren
exhibit broaderimpairmentsin the representatiomnd use
of phonology They performpoorly on mary non-reading
tasksthatinvolve the useof phonology including the pho-
nological avarenesgasksthat have beenwidely studied.
The dual-routeframework treatstheseimpairmentsas es-
sentiallyunrelated;childrenwho areimpairedin learning
grapheme-phonemenrrespondencesappento also have
additional impairmentsin the representatiorand use of
phonology In our approachthe two deficitsare causally
related:phonologicaldyslexia derivesfrom animpairment
in therepresentationf phonologicainformation. Thisim-
pairmentaffectsperformanceon tasksinvolving the useof
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thisinformation,oneof whichis readingacquisitionespe-
cially nonwordreading.

The hypothesisthat phonologicalimpairmentsrather
thanimpairedrule-learningunderliephonologicaldysleia
derivesfrom two sources First,asmentionedabove, there
is avastdevelopmentaliteraturerelatingphonologicaim-
pairmentgdo readingdifficulties(e.g.,Shankweile& Liber-
man, 1989; Olson et al., 1989; Share,1995; Wagner&
Torgesen,1987; Tunmer& Nesdale,1985). Second,the
hypothesiss consistentvith abodyof computationaimod-
eling work. One importantsourcewas Besney Twilley,
McCann,and Seegobin’s (1990) obsenationthat because
the SM89 modelperformedrelatively poorly on nonwords
its performancewas like that of a phonologicaldyslexic.
Plautetal. (1996)demonstratethatimproving themodels
phonologicalrepresentatiotyielded better generalization.
Harm and Seidenbay (1996) presentegreliminary simu-
lation resultsshaving thatdegradinga model’s capacityto
encodephonologicaregularitiesledto poorgeneralization.
Similar resultswerereportedby Brown (1997),who com-
pareda small scalemodelusing SM89 representationto
oneusing PMSPrepresentationsConsistenwith the ear
lier work, hefoundthatthe network with SM89-stylepho-
nological representationperformedmore poorly on non-
words. Theseresultsled Brown to proposethatimpover-
ishedphonologicakepresentationareimplicatedin devel-
opmentalyslexia.

The presentstudyadwanceshis work by shaving that
theseresultsobtainwith morerealisticphonologicakepre-
sentationshy introducinga phonologicahttractorin which
phonologicalstructureis learned,by providing computa-
tional analysesof why phonologicalrepresentatioris re-
lated to generalizationpy relating the phonologicalim-
pairmentswe introduceinto the modelto variousdeficits
in phonologicalawarenessand speechperceptionseenin
somedyslexic children, and by relating the behaior of
the modelto behaioral dataon children’s readingperfor
mance.

2. The natureof impairmentin the surface(or “read-
ing delay”) subtype. Castlesand Colthearts (1993) view
emphasizetheimpairmentin exceptionword readingseen
in thesechildren but this is only one part of their beha-
ior. Thebroadepictureis thatthey aredevelopmentallyde-
layedwith respecto readingwhichyieldsimpairedperfor
manceon all typesof stimuli not just exceptions.Whereas
Coltheartandcolleague®xplainthis patternin termsof im-
paireduseof thelexical route,weview it in termsof factors
thatcausethis type of generaldevelopmentatelay

3. Accountsof selectve and mixed patterns. We see
it asa problemfor the Coltheartet al. (1993)theorythat
somekinds of selectve impairmentgpredictedby the dual-
routemodelhave notbeenobsened. In principle,thedual-
routemodelaffordsthe possibilitythatexceptionword and
nonword readingcould completelydissociatewith perfect
performanc®noneandnil performanc®ntheother apat-
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ternthathasnotyetbeenobsened. In theCastlesandColt-
heart(1993)andManis et al. (1996) studies therewerea
small numberof childrencateyorizedas“pure” surfaceor
phonologicaldyslexics. However, Manis et al. found that
therewasa strongrelationshipto degreeof readingimpair-
ment:the“pure” childrenweremild casesBelow we shov
how this patternarisesin our model. Thedual-routemodel
however, predictsa much broaderrangeof dissociations
thanhave beenobsened?® Thefactthatmostdyslexics are
impairedon both exceptionsandnonwordsalsopresentsa
problemfor the dual-routemodel. Thesestimuli are han-
dled by separatanechanismsand so the obsened pattern
canonly be explainedby assuminghatin mostcasesoth
routeshappenedo developanomalouslyWhy bothroutes
shouldroutinely be impairedtogetheris unclearandthere
is certainlyno independenévidence(e.g.,from neurobiol-
ogy or neuroimaging}hatthisis so. Ourtheoryprovidesa
simpleaccounbf themixedcasesbecausasinglemecha-
nismis usedto generat@ronunciationgor all letterstrings,
a giventype of developmentabnomalywill tendto affect
both exceptionsand nonwords, thoughnot necessarilyto
thesamedegree.Phonologicaimpairmenthasa biggeref-
fect on nonwordsthan exceptions;with only a very mild
impairment,nonword performancecanfall slightly below
age-apectedevelswhile exceptionword readingis within
normallimits. With a more severeimpairment,both non-
wordsandexceptionsbegin to be affected;theimpairment
continuego have a biggerimpacton nonwordsbut perfor
manceon bothtypesof itemsfalls belov age-&pectedev-
els. The oppositeeffectsareseenin the surface/delaytype
of pattern.Thetypesof impairmentsve explorebelov have
theseeffects.

4. Relationshipdo normalreading. Finally, thereare
differencesin how the two subgroupsof dyslexics com-
pareto normals. Whereasthe surface dyslexics’ perfor
manceis very muchlike that of youngernormalreaders,
the phonologicaldyslexics’ performancds not. The dual-
mechanisntheoryoffers no explanationfor thesedifferent
patterns.In contrastwe shav why one patternof impair
menttendscreatebehaior thatlooks like youngernormal
readingwhereaghe otherdoesnot.

5CastlesandColtheart(1996)presena casestudyof a10year
old child (MI) whosepronunciatioraccurag wasvery low on ex-
ceptionwordsbut within normalon regularwordsandnonwords.
However, Ml cannotbetaken asproviding evidencefor a normal
nonlexical route with a selectve impairmentin the lexical route
becauséisreadingof eventheitemsthathepronouncedaorrectly
was highly atypical. His readingwasvery effortful andhe often
took several secondgo soundout a word, methodicallyworking
throughletter by letter before producingthe final pronunciation
(e.g.,“c..o..n..t.a..t... contet!”) (Castlespersonatommunica-
tion). Ratherthanaselectve impairmenin thelexical route, Ml is
bettercharacterizedsase/eremixedcasewhoutilizedanoff-line
compensatorgtratey.
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Phonolaical Dysleia Simulation

We simulatedphonologicaldysleia by impairing the
representationf phonologicalinformationbeforetraining
themodelto read.We thenexaminedhow readingacquisi-
tion proceededindertheseconditions.The capacityof the
network to represenphonologicalstructurewas impaired
in two waysdifferingin severity. Themild form of damage
involvedimposinga degreeof weightdecayon theweights
in thephonologicahttractor With thismethod gachweight
w in the attractoris reducedn magnitudeaccordingto the
formulaAw = —wp wherep is the decayconstantWeight
decayplacesdboundsonthemagnitudeshattrainedweights
canacquire,therebyreducingthe depthof the phonolog-
ical attractors Pilot studiesrevealedthata slight degreeof
weightdecay(usinga decayconstantp = 0.00005)hada
smalleffecton theability of thenetwork to performphono-
logicaltaskssuchaspatterncompletion.Thisconditionwill
thereforebe referredto asthe mild phonologicalimpair
ment. A more severeform of damagewas also explored,
which involved removing the phonologicalcleanupunits,
the continuedmpositionof weightdecay andthe severing
of a random50% of the connectiondbetweenthe phono-
logical units. This hasa larger effect on the ability of the
network to encodephonologicaldependencieandwill be
referredto asthe modeatephonologicaimpairment.After
presentingheseresultswe will describeathird simulation
with anevenmoreseverephonologicaimpairment.

The effect of differing levels of phonologicalimpair
menton the patterncompletiontask (seep. 7) wastested.
The meansum squarederror over all simulationsand all
featuresvasmeasuredThe normalmodelproducednean
errorof 0.08,themildly impairedmodel0.16,andthemore
severelyimpairedmodel0.38(F(2,21) = 1829,p < 0.001).
Thus, as damageincreasesthe ability of the network to
performthe taskis graduallydegraded. This resultindi-
catesthat the two typesof anomaliedid degradethe rep-
resentatiorof phonologicalinformation. We now consider
how readingacquisitionproceedswith thesetypesof im-
pairmentsin place. To comparethe mild and moderate
phonologicalimpairmentconditionsto the normal model
discussedh the previoussection eightsimulationsof each
conditionwererun. As with the normalmodel,a different
randomnumberseedwaschoserfor eachsimulationrun.

Figure 12 shavs the resultsfor the mild phonological
impairmentcondition. Whereagerformancen exception
words is essentiallyunafected, nonword performances
significantlyimpaired.This patterncorrespond$o a “pure”
phonologicaldyslexic. The purecasesbsenedby Manis
et al. (1996) were also only mildly impaired. Figure 13
shavs the performancef the modelwith moderatgphono-
logicaldamageNonword performanceleclinesfurtherand
exceptionsalsobegin to be affected,yielding the “mixed”
pattern. The differencein meanexceptionword perfor
mancebetweenthe normaland severely impairedmodels

waslargest,19.2%,at 500,000trials.

More Severe Impairments The phonologicalimpair-
mentgpresentedboreinvolvedreducinghecapacityof the
phonologicalattractorin someway, eitherthroughweight
decayor weight decayconjoinedwith lesioning. These
methodgproducehecorrectpatternof results;smalllevels
of impairmentproduceapurecaseandgreateimpairments
producea mixed case. For the mixed case,however, the
level exceptionwordimpairmentwassmallerthanobsenred
in theManisetal. study Thisis potentiallyproblematic;jf
phonologicadamagecannotproduceimpairmentsn read-
ing aslargeasareseenin thebehaioral literature it would
underminghe phonologicaimpairmenthypothesis.

Thereis a limit on the degree of impairmentthat can
be producedby simply removing connectionsn the pho-
nological attractor;in the limit, with all connectionsser-
ered, performancevould be identicalto the Feedforvard
simulationdiscusseckarlier However, a moreseriousim-
pairmentwas createdby making the computationswithin
the phonologicalattractormore noisy. Formally, at each
time slice of processingthe effective weightw ; i,j wasde-
rivedfrom the weightw; ; accordingto theformulaw’
wi j(1.0+op(t)), whereo is a free parameterand p( )

a gaussiardistributedrandomvariablewith standarddevi-
ationo thatwasvariedacrosssimulations.c = 0.1 yielded
performancevery similarto themoderatgphonologicaim-
pairmentconditiondiscusse@dbove, while o = 0.2 resulted
in extremelyimpairedlearning(exceptionsand nonwords
never scoringbetterthan20%correct).

Figure 14 shavs the developmentakturvesfor the nor-
mal and severely impairedmodels. The normal dataare
the averageof 8 simulationsandthe impaireddatathe av-
erageof simulationsusing sigmasof .115,.125, and.15.
Noisecorruptionis clearly capableof producinglarge im-
pairmentsin both exceptionand nonword performance A
valueof o = 0.15 producedperformancehatis 50% lower
than the normal model on exceptions,and 51% lower on
nonwords. The simulationsillustrate the continuity be-
tweendegreeof phonologicaimpairmentandlevel of read-
ing performancethelargerthe noisecorruptionparameter
o, theworsethe exceptionandnonword reading.As in the
mild and moderatesimulations,phonologicalimpairment
primarily affects nonwords, with exceptionsimplicatedat
moresererelevels.

Table 7 shaws the resultsof the simulationswith mild
phonologicaldamage(weight decay), moderatedamage
(lesioning), and variousvaluesof a. All networks were
evaluatedat 1.5 million trials. The table also provides
datafrom individual participantsn the Maniset al. study
Theparticipantsperformanceariedconsiderablypnewas
classifiedas normal, two were moderatelyimpaired, and
two moreseverely Eachsimulationcreatesdeficitpattern
thatis closely matchedby a participantin the behaioral
study
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Figure 13. Greatelimpairmentto nonwordsresultingfrom moderatephonologicaimpairment(left). Excep-

tion wordsalsobegin to be affected(right).

The ComputationalBasis of Nonwod Impairments
Both the behaioral and simulationdatasuggesthat pho-
nologicalimpairmentshave their mainimpacton nonword
generalizationWe now useanalyse®f the network to get
at why this outcomeobtains.The basicinsightis this: Our
model containsa phonologicalattractor structurewhose
function is to complete,cleanup or repairincompleteor
noisyphonologicapatternsusingtheknowledgeof phono-
logical structurethatis representeih theseweights. Hav-
ing this structurein placein the normalmodelaffectswhat

is learnedin the weightsmediatingthe computationfrom
orthographyto phonology Specifically with the clean-up
apparatusn place,the mappingthroughthe hiddenunits
canberelativelyimprecisetheoutputfrom thehiddenunits
only hasto beexactenougHtor theclean-upapparatuso re-
solve into the correctpattern.Thisimprecisionturnsoutto
be relevantto nonword generalization Without the clean-
up apparatusthe mappingfrom orthographyto phonology
mustbemoreprecisethemodelcanlearnthemappinggor
wordsin the training setbut generalizegpoorly. In short,
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Figure 14.
bothseverelyimpaired,andcannotrecover.

Table7
Phonolaicalimpairmentcompaedwith participantsfrom
Manisetal. (1996)

Level of
Score Impairment

Exc NW Exc NW

Participant76' 76 83 +1 -6
Model, Mild Impair. 68 65 0 -10
Participant44’ 67 73 -8  -16
Model,Moderatelmpair. 60 58 -8 -17
Participant138F 69 67 -6 -22
Model,o =0.115 42 52 -11 -22
Participantl51F 54 56 21 -33
Model,c = 0.125 49 41 -19  -34
Participant319F 32 37 -43 52
Model,c = 0.15 18 24 -50 51

Note TNormal Participant. *PhonologicaDyslexic Participant.
Participant level of impairment is the difference between
participants score and the mean for the same-agednormal
controls(exc: 75%,nw: 89%). Model level of impairmentis the
differencebetweerthemodels scoreandthe meanfor thenormal
model (exc: 68%, nw: 75%). All model measurementaere
takenat1.5Miterations.
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Invasive phonologicalimpairmentsimulation. Nonwords (left) and exceptionwords (right) are

the clean-upapparatusliscouragesverfitting the training
data.

To demonstratgheseeffects more clearly, we exam-
inedthephonologicabutputcomputednthebasisof input
from the hiddenunitsin the absencef arny input from the
phonologicakattractometwork. Thiswasaccomplishedy
taking trainednetworks andthen performingthe testwith
thephonologicalveightsremoved. Theoutputof thesenet-
works were comparedhe computedoutputfor eachword
totheveridicalpattern.Thisyieldsanindex of theprecision
of themappingperformedby the hiddenunits. Thenormal
model’s errorwas 36.7,the mildly impairedmodel’s error
wasl14.9,andthemoresererelyimpairedmodelserrorwas
8.4(F(2,21) = 1357, p < 0.001). Thus,the outputof the
hiddenunitsis lessprecisefor the normalattractormodel
thanin thetwo phonologicallyimpairedconditions.

We have hypothesizedhat the effect of requiringthe
hiddenunitsto performa moreexactcomputationis over
fitting of the training data, which interfereswith general-
ization. In orderto examinethis, we constructed testthat
wasperformedon boththe normalandmoderatelyphono-
logically impaired networks. The inconsistentneighbor
hood-EAT was examined. This neighborhoochasa large
numberof rule governedpronunciationge.g., EAT, MEAT,
BEAT, SEAT, TREAT) andseveral exceptions(e.g., GREAT,
THREAT, SWEAT). A typical run of the normalmodelwas
used,which scoredcorrectly on all words and nonwords
containingthis word body. We alsoexamineda run of the
phonologicallyimpaired simulationthat producedcorrect
outputfor all of the wordswith this bodybut anerrorona
similar nonword GEAT.

Oneof the featuresthat distinguisheghe /i/ phoneme
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Figure 15. Normalmodelhiddenunit contritution to tonguefeaturefor words(top left to bottomright) EAT,
MEAT, TREAT andthenonword GEAT. Positive valuesareshavn in black,negative valuesaregrey. Eachcell’'s

shadedareadepictsits magnituderom 0.0to 0.5.

from /e/ is tongue By looking at the hiddenunit contri-
butionsto this featureover a setof informative words, we
canbegin to seewhatit is aboutthenormalnetwork thataf-
fordsgeneralizationandwhataboutthephonologicallyim-
pairednetwork thatpreventsit. Hinton diagramswvereused
to visualizevarying contritutionsof the hiddenunits. Each
hiddenunitis connectedo thetonguefeatureby avariable
weight;the actiity thateachhiddenunit contributesto that
featureis the productof the hiddenunit's outputandthat
weight. In the figuresthatfollow, the productof eachhid-
denunit'sactvity andtheweightconnectinghatunit to the
tonguefeatureis plotted. Figurel5 shavs the contributions
of the hiddenunitsto thetonguefeaturefor the wordsear,
MEAT, TREAT andthenonword GEAT. Figurel6 shovsthe
correspondingplotsfor the network with moderategphono-
logicalimpairment.A scaleof —0.5 to 0.5 wasusedfor all
Hintongraphswith thesizeof theshadedox representing
theratioof thevaluesmagnitudérom 0.0to +0.5. A value
> 0.50r < —0.5resultedn asolid cell in the plot. Positve
valuesareshown in black,negative valuesin grey.

Figure 15 shaws that the hiddenunit actuities for the
variouswords are quite similar. The hiddenunits are all
receving differentactivation from the orthographiconsets

of thewords,andyet for the purpose®f thetonguefeature
onthevowel thewordsarebehaing essentiallyalike. Con-
trastthis with Figure 16, activationsfor the samewordsin
the impairedmodel. The figure shaws that the phonolog-
ical impairmentresultsin mary more units makinglarger
contributions,both positive andnegative, to thetonguefea-
ture. It alsoshaws thatthe wordsare moredifferentfrom
eachotherandfrom the nonword GEAT thanin the normal
condition.

Borrowing a techniquefrom neuroimagingstudies,we
useda subtractve methodto highlight theseeffects more
clearly Thehiddenunit activation“images”for thenormal
model’s representationf EAT and MEAT were subtracted,
aswereEAT and TREAT, andMEAT andTREAT. The aver-
ageabsolutevalue of thesedifferencedifferencedor the
normalandimpairedmodelsare plottedin Figure17. For
thenormalmodel,the differencesaresmallbecausét rep-
resentghethreewordsvery similarly. In contrastthe dif-
ferencesarelargerfor theimpairedmodelbecausehereis
lessoverlapin its representationsf the threewords.

A similarsubtractve proceduravasperformedo assess
differencedetweerthemodels’representationsf thenon-
word GEAT andthe threerhyming words. The difference
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Figure 16. Moderatelyphonologicallyimpairedmodels hiddenunit contribution to tonguefeaturefor (top

left to bottomright) EAT, MEAT, TREAT andGEAT. Eachcell’s shadedareadepictsits magnitudefrom 0.0to
0.5.

Figure 17. Meandifferencedetweerhiddenunit activity for wordsMEAT, TREAT, andeAT for normal(left)
and phonologicallyimpairednetwork (right). The normal model shavs small differencescomparedo the
impairedone,indicatingthatthe threewordsaremoresimilarly representeih hiddenunit space.Eachcell’'s
shadedareadepictsits magnituderom 0.0to 0.5.
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Figure 18. Meandifferencedetweerhiddenunit activity for thenonword GEAT andEAT, MEAT andTREAT
for normal (left) and phonologicallyimpairednetwork (right). The phonologicallyimpairednetwork shavs
greateraveragedifferencedbetweerthe wordsandthe nonword. Eachcell’'s shadedareadepictsits magnitude

from0.0t0 0.5.

betweeneAT and GEAT was computedand stored,aswas
the differencebetweenMEAT and GEAT, and TREAT and
GEAT. Theabsolutevaluesof thesedifferencesvereaver
agedandplottedin Figure18. The differencesaresmaller
for thenormalmodel.

Table8 shaws theseeffectsnumerically The meanab-
solutevaluesof the difference®f the hiddenunit contritu-
tionsto thetonguefeaturefor EAT, MEAT, TREAT, GEAT are
shawn, for both the normalandimpairedsimulation. The
aggrejateinput and outputof the tonguefeaturefor each
itemis shovn aswell. For the normalnetwork, the hidden
unit outputsfor thefour itemsarevery similarto eachother
The effect of this similarity canbe seenin the outputcol-
umn,wherethe outputsareall within thresholdf thetarget
valueof zero.

In contrast,the impaired network shaws large differ-
encesn themeancontritutionsfrom thehiddenunits,rang-
ing from 0.14to 0.22. The aggreyateinputsto the tongue
featurefor the threewordsarevery similar, but the differ-
encesbetweenthe hiddenunits are large. Thus, the im-
paired model is able to pronouncethe three words EAT,
MEAT, TREAT correctly but in a qualitatvely differentway
from the normal model. The normal model pronounces
EAT, MEAT, TREAT usingvery similarhiddenunit represen-
tations,whereaghe impairedmodelproducescorrectout-
putusingdifferentrepresentationsf thewords.

The impactof representinghe words differently from
eachotheris seenin performanceon the nonword GEAT.
The normalmodelcanpronouncehe nonword GEAT cor-
rectly, due to the overlap in hidden unit actvity among
EAT, MEAT, TREAT. Theimpairedmodelcannotpronounce
GEAT correctlybecaus¢herepresentationis hasdeveloped
for thewordsdonotoverlapenoughthenonwordis notsuf-
ficiently closeto ary of theword representationt® support
the correctpronunciation.Put simply, the normalnetwork

treatsthe threewordsEAT, MEAT, TREAT similarly, andis
henceableto pronouncea similar nonword GEAT. Theim-
pairednetwork treatsthe threewordsdifferentlyfrom each
other, representinghemmore like unanalyzedindividual
wholeswith lessoverlappingstructure. Thereforet cannot
take advantageof the similarity betweenthemwhenread-
ing the nonword, even thoughit can correctly pronounce
thewords.

Measuringthe sensitvity of the hiddenunit layer to
a particularinput featureis alsoilluminating. By taking
the differencein hiddenunit actity, asprojectedontothe
tonguefeature,for the words EAT and MEAT, we cansee
the overall sensitvity the network hasdevelopedto the m
orthographiceature. More formally, the sensitvity to the
Mm featureis definedass = F1% |hi, — hi 4|, wherehl is
the contritution of theith hiddenunit to thetonguefeature
for the word EAT, while hi., is the samemeasuréor the
word MEAT. A network which hasno sensitvity to M in
the context of theword MEAT would measures = 0, while
anetwork whichis attendingto the M would have a higher
svalue.Thesvalueis ameasuraf thedegreeto whichthe
network hasformed word specific representationsvithin
theregularpool of wordsendingin EAT.

The model with moderate phonologicalimpairment
shaws a higherlevel of sensitvity to the m letterin MEAT
thanthenormalmodeldoes(Figure19). More importantly
the sensitvity is monotonicallyincreasingwith training,
whereashe normalmodeldevelopsa lower level of sen-
sitivity anddoesnot increase.As training progressesthe
phonologicallyimpairedmodelis becomingmoresensitve
to spuriousaspect®f theinput;theletterm is notnecessary
for thepronunciatiorof thevowel in theword MEAT but the
impairedmodelis attendingto suchinformationanyway.

The -EAT examplesuggesthatthe phonologicallyim-
paired networks develop solutionsto the orthographyto
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Table8
MeanDifferencesn HiddenUnit Contributions
MeanDifferences InputFrom  Feature
EAT MEAT TREAT GEAT HiddenUnits Output
NormalNet
EAT 0 0.04 0.04 0.04 -0.72 -0.01
MEAT 0 0.05 0.05 -0.87 0.03
TREAT 0 0.05 -0.42 -0.02
GEAT 0 -0.91 -0.09
ImpairedNet
EAT 0 0.14 0.17 0.15 1.08 -0.10
MEAT 0 0.24 0.16 1.15 -0.03
TREAT 0 0.22 0.98 -0.14
GEAT 0 2.16 0.59

phonologymappingproblemthat are more word specific
thanwhenthe phonologicahttractorapparatuss function-
ing. However, we needto considemwhetherthis patternre-
flectsagenerapropertyof thenetworksratherthanidiosyn-
crasiesassociatedvith -EAT. To testthis, a setof neigh-
borhoodswasidentified. A neighborhoodvas definedas
a set of words whoseorthographicvowel and codawere
identical, and also rhymed (for example GAVE, BRAVE,

SAVE but not HAVE). A total of 443 neighborhoodsvere
foundin thetraining corpus.The standarddeviation of the
hiddenunit contributionsto the vowel’s placeof articula-
tion was measuredor eachneighborhood. This number
was averagedover all hiddenunits. The averageof these
measuresver all neighborhoodsandoverall normalmod-
els was then computed. This procedurewas repeatedor

the moderatelyphonologicallyimpairedmodel. The nor

mal modelsshaved a meanstandarddeviation of 0.1046
while the impairedmodel shaved a meanstandarddevia-

tion of 0.2818.Themeanstandardieviationwithin aneigh-
borhoodwas also much higherin the impaired networks
(F(1,14) = 2255, p < 0.001). This indicatesthatin gen-
eral the hiddenunit representations the impairedmodel
aremuchmorediversewithin neighborhoodshanthe nor-

mal model.

To summarizethetaskof thehiddenunitsin the phono-
logically impairedsimulationis moredifficult, in thattheir
mappingonto phonologymust be more accuratethan in
the normal model. This requirementfor greateraccu-
ragy causeghe modelto attendto moreword-specificas-
pectsof the input; overfitting the training datais the re-
sult. Thus,the modelis biasedto becomea whole-word
reader forming overly divergentrepresentationfor words
with orthographi@andphonologicatommonalitiesHaving
formedtheseword specificrepresentationtheninterferes
with computingoutputfor novel items®

61t is theoreticallypossibleto createthe overfitting problemin
a model by other means,suchasthe useof too high a ratio of
hiddenunitsto patterns.This couldresultin poor generalization

This accountis consistenwith the finding that phono-
logical dyslexics sometimesexhibit greaterrelianceon or-
thographicstructurethannondysle&ics. Rack(1985)found
thatdyslexics hada greatersensitvity to orthographicues
in arecalltaskthannormals;corversely they shovedless
sensitvity to phonologicalcues. Other studiessuggest-
ing that dyslexics shav greatersensitvity to orthographic
structurehave beentakenasindicatingthatthey useamore
visually-basedtratgy in reading(seeSnavling, 1991, for
areview). Ourview is thatthisdependencenorthographic
structureis not a stratgy but just a consequencef how
themappingoetweerorthographyandphonologyis learned
when the capacityto representphonologicalstructureis
limited.

Aswe havenoted,amild phonologicalmpairmentonly
affectsnonwordswhereasa more severe phonologicalim-
pairmentaffectsexceptionsaswell. The reasonsvhy ex-
ceptionsare eventually affectedfollow from the previous
analysis. Phonologicalimpairmentrequiresgreateraccu-
ragy in the mappingfrom the hiddenunits onto phonolog-
ical output. The greatertheimpairmentthe greaterthe re-
quired accurag. Achieving higherlevels of accurag re-
quiresthe recruitmentof more hiddenunits. Comparing
Figures15 and 16, it is apparenthat the phonologically
impairedsimulationusedmorehiddenunitsin the compu-
tationthanthe normalmodel. As morephonologicaldam-
agedemandgreaterhiddenunit resourcego performac-
curatemappingsthereare fewer computationakresources
availableto performmorespecifictasks,suchasexception
word decoding. Hence,we startto seean exceptionword

evenin thepresencef normalphonology However, suchadevel-

opmentakondition(entirelynormalword readingandphonology
but very poor nonword reading)is asyet unattestedn the litera-

ture. Additionally, the introductionof a training regime that ac-
tively discourageshe computatiorof the soundpatternof aword

(“instructional” phonologicaldyslexia; seeJoanisset al., 1998)
couldresultin poorgeneralizatiorperformancen the absencef

phonologicaimpairments.
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Figure 19. The sensitvity to the letter M in processingthe

words MEAT versuseAT; normaland moderatelyphonologically
impairedmodel.

readingdeficitat moreseverelevelsof impairment.

This analysisof the basisof exceptionword deficitsin
phonologicaldyslexia is interestingbecauset is closely
relatedto the accountof exceptionword errorsin surface
dyslexia presentedelow. In surfacedyslexia, exceptions
aremoreimpairedthannonwords.Oneway to producethis
patternis by reducingthenumberof hiddenunitsmediating
the computatiorfrom orthographyto phonology Reducing
the computationatapacityof the modelin this way hasa
biggerimpacton learningexceptionsthanon learningreg-
ular spelling-soundcorrespondencesOur accountof the
exceptionword deficitin severeformsof phonologicalys-
lexia is thatthe phonologicaimpairmentindirectly hasthe
sameeffect: the capacityof the network is taxed because
the orthography-phorology pathway must encodemore
of the regularitiesin the system,leaving fewer resources
available for exceptions. Thus, in phonologicaldyslexia,
impairedexceptionword readingarisesfrom lack of com-
putationalresourcesn the orthography-phorology path-
way, indirectly causeddy the primary phonologicaldeficit.
In surfacedyslexia, impairedexceptionword readingarises
moredirectly from reducedcomputationatapacitycaused
by thelack of hiddenunits. Thus,we have achieved a uni-
fied accountof exceptionword errorsin thetwo cases.

Other“pure” phonolagjical dyslics The analysisof
thephonologicallyimpairedmodelpredictsthatmild levels
of impairmentyield pure caseswhereasnore severe lev-
els of impairmentproducemixed cases.As discussecar
lier, theseresultsareconsistentvith the Manisetal. (1996)
study However, therearecasestudiesin the neuropsycho-
logical literatureof pureyet severecasef developmental
phonologicaldyslexia. Our view is thatthesepatients’per
formancereflectotherfactorsoutsidethe scopeof ourmod-
els. Oneimportantfactordiscussedy Maniset al. is the
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Figure 20. The*“triangle” modelfrom Seidenbeay andMcClel-
land(1989).

kind of remediatiortheindividual hasreceved. For exam-
ple,HowardandBest(1996)discussegatientMJ, whowas
in hereightiesat thetime of testingbut describechsa “de-
velopmental’phonologicabyslexic becausshewasallife-
long poor reademwithout any known neuropathology She
exhibited a severe nonword readingimpairmentwith nor-
malword reading.This type of patientcanbe explainedby
appealto the “triangle” model(Seidenbey & McClelland,
1989)shavn in Figure20. Generatinghe pronunciatiorof
a letter string normally relieson the computationfrom or-
thographyto phonology However, if this pathway is com-
pletelydisabledby braininjury, it is possibleto pronounce
familiarwordsby meansf thecomputatiorfrom orthogra-
phy to semanticgo phonology This part of the network
doesnot supportthe pronunciationof nonwords because
they arenotrepresenteth semanticsPatientMJ showvs ex-
tensie evidenceof usingthis semantically-basegronunci-
ation: herreadingatenciesevealedexaggeratedensitvity
to semanticvariablessuchasimageability andlower sen-
sitivity to spelling—soundpropertiessuchas consistenyg.
PatientMJ hashadampleopportunityto develop compen-
satorystratgiesto dealwith her developmentaldyslexia.
Extensveremediatioremphasizingemanti@approacheto
readingcanbe expectedo resultin improvedword reading
atthe expenseof nonword reading,andassuchcanleadto
arelatively purenonword namingdeficit.

Speeh Impairmentsand Phonolgical Dysleia. A
large numberof studieshave investigatedvhetherthe pho-
nologicaldeficitsseenin mary dyslexics are secondaryto
morebasicimpairmentsn the processingf speechThere
is good evidencefor this relationshipin childrenwith de-
velopmentalanguagempairmentgsometimegalled“spe-
cific languageémpairment”; Bishop,1992). Many of these
childrenhave animpairmentin speectperceptiorandpro-
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duction,which is thoughtto underlietheir deficitsin other
aspect®f languagdncluding phonology morphologyand
syntax(Leonard McGregor, & Allen, 1992;Leonard,Sab-
badini,Leonard,& Volterra,1987;Tallal & Piergy, 1973a,
1973b; Tallal, Stark, & Curtiss,1976; seeBishop, 1992,
1997 and Joanisse& Seidenbey, 1998 for reviews). By

definition phonologicaldyslexics are poor readerswhose
languageskills are otherwisethoughtto be normal. If a
speechperceptiondeficit were the proximal causeof pho-
nological dyslexia, it would have to be onethat haslittle

impacton comprehensioor productionyetinterfereswith

reading.

Studiesof speechperceptiondeficitsin dyslexia have
yielded mixed results. Most studieshave focusedon the
catgyorical perceptionof phonemesuchas/b/ and/d/. In
several group studies(e.g. Godfrey, Syrdal-Lasl, Mil-
lay, & Knox, 1981; Werker & Tees,1987; Reed, 1989;
De Weirdt, 1988; Manisetal., 1997)dysleic childrenex-
hibited less-pronouncedateyorical perceptioreffectsthan
normals.However, theeffectshave oftenbeensmallandnot
statisticallyrobust. Otherstudiedailedto yield sucheffects
atall in someconditions.Hurford and Sanderg1990),for
example foundgroupdifferencesn phonemeperceptiorin
a study of secondgradenormalanddyslexic children, but
failedto find ary suchgroupdifferenceswith fourth grade
children. Moreover, analyseof individual participantsin
Manis et al. (1997)showved that speectperceptiordeficits
wereonly seenin a subsetf dysleic children. Although
additionalresearchmeedsto be conductedjt appearghat
mary dyslexics who exhibit clear deficits on testsof pho-
nologicalknowledge performnormally on simple testsof
speeclperception.

As we will shaw, thephonologicakttractorcomponent

of the modelexhibits categyorical perceptiorof consonants.

We could thereforeexaminewhetherthe kinds of phono-
logical impairmentshatwe have introducedin simulating
phonologicaldyslexia createan impairmentin this aspect
of speeclperception.

Catayorical perception experiments typically utilize
both identificationand discriminationtasks. In the iden-
tification task,stimuli areconstructedvith consonantshat
vary linearly along a continuumbetweentwo exemplars,
for examplefrom /b/ to /d/, whichdifferin their secondand
third formants. Participantsareasledto labelthesetokens
asinstance®f /ba/ or /da/ in aforcedchoice. Theiriden-
tification functionsarethenanalyzedwith respecto points
alongthe continua.A standardinding is thatparticipants’
identificationfunctionstendto berelatively flat andconsis-
tentwithin a category boundary with a very sharptransi-
tion at the boundarypoint. Althoughthe stimuli vary lin-
earlyfrom onetokento anothey participants’identification
curvesaremarkedly nonlinear

In the standarddiscrimination task, participantsare
given pairsof stimuli andasledto judgewhetherthey are
thesameor different. The basicphenomenois thatpartic-

ipantsarevery poor at discriminatingstimuli within a cat-
egory, and much betterwhenthe contrastingstimuli span
a catgory boundary Whendiscriminationscoresareplot-
ted againststimuli pairs,a sharppeakis typically found at
the categgory boundarywith muchpoorer(andflatter) per
formancewithin cateyories(Liberman,Harris,Hoffman,&
Griffith, 1957; seealsoHarnad,1987). Werker and Tees
(1987) and Godfrey et al. (1981) examinedthe categori-
calperceptiorof phonemesy normalandreadingdisabled
children. Both studiesfound group effects on the slopes
of the identificationfunctions; the disabledreaders’iden-
tification curveswere slightly lesssteepthanthat of con-
trol children, althoughthe effect wasonly mamginally sig-
nificantin Werker and Tees(p < 0.06) andin one of two
analysedy Godfrey etal. (p < 0.08in one,p < 0.01in
another). Werker and Teesand Godfrey et al. also an-
alyzedthe children’s discriminationscores. Both studies
useda formuladevelopedby PollackandPisoni(1971)for
predictingdiscriminationperformancdrom a participants
identificationcurves. When cateyorical perceptionis nor-
mal, this formulaaccuratelypredictsdiscriminationscores.
The matchbetweenpredictedand obtaineddiscrimination
thereforeprovidesanindex of deviationsfrom true cateyor-
ical perception. This procedureprovidesa more sensitve
assessmerdf the child’s phonemeperceptiorthanjust the
identificationtask.It is possiblethatarelatively steepden-
tification function might be obtainedevenif perceptionof
stimuli weremorecontinuoughancateyorical,throughthe
applicationof asimplethresholdingdecisioncriteria(Mas-
saro,1987).However, if perceptiorweretruly lesscateyor-
ical, thechild would thenshaw discriminationperformance
thatis differentfrom that predictedby their identification
curve,in contrasto normals.

In both Werker and Tees (1987) and Godfrey et al.
(1981), the reading disabled children’s discrimination
scoresveremoredeviantfrom their predictedabilitiesthan
thenormalchildren’s. Thusit wasconcludedhattheir per
ceptionof the speechtokenswas not as strongly categori-
cal. Theseeffectswerestrongerandmorereliablethanin
theanalyse®f the slopesof theidentificationcurves.

We replicatedthe Werker and Tees(1987)and Godfrey
et al. (1981) studies,examining the normal and impaired
models’processingf speectstimuli like the onesusedin
catayorical perceptionexperiments.Stimuli rangingalong
a continuumfrom /b/ to /d/ werecreatedby linearly inter-
polatingfeaturevalues. Eachith weightedfeaturex; was
createdfrom the ith featureof a veridical /b/ (b;) andthe
ith featurefrom a veridical /d/ (d;) accordingto the for-
mulax = (1.0 — a)b; + ad;, wherea rangedfrom 0.0 to
1.0. Eleventokenswerecreatedequallyspacedalongthe
continua,by varyinga from 0.0 (a pure/b/) to 1.0 (a pure
/d/) in stepsof 0.1. Thea parametecanbe thoughtof as
the proportionof /d/ to /b/ in the generatedokens. The
vowel /a/ was placedin the vowel slot to createthe com-
pletesetof tokensrangingfrom /ba/ to /da/. Thesestimuli
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Figure21. Normalandphonologicallyimpairedmodels’identificationcurves(left). Comparewith datafrom

Werker andTees(1987),Figure?2 (right).

were presentedo the normalnetwork andto the mild and
moderatelyimpairedmodels.Resultsfor the two impaired
modelswereaveragedogetheyontheview thatthe partic-
ipantsin the behaioral experimentsalsovariedin termsof
the severity of their phonologicaldeficits.

Stimuliwerepresente@sfollows. For thefirsttwo time
ticks, the phonologicalunits of the network were clamped
with therepresentationf the testtoken. The network was
then allowed to run until five ticks, with the valuesun-
clamped.Thephonologicatepresentatioattheconclusion
of five tickswasthenrecorded Theeuclideardistancebe-
tweenthis outputphonologicalepresentatioandveridical
/bl and/d/ werecalculated.

To simulatethe identificationtask, the distancedrom
the networks’ outputto /b/ (Ap) and/d/ (Aq) were used
to generatea probability of labeling the output as either
of thosestimuli. The probability of an /b/ response py
was computedas pp = 1.0 — (Aq/(Aq + Ap)). The prob-
ability of an /d/ responsewas the mirror image: pq =
1.0— (Ap/(Ag +Dp)) (notethatpp+ pg = 1.0). Theseprob-
abilitieswererecordedor eachnetwork’sresponséo each
stimulustoken.

Figure21 depictsthe identificationcurvesfor the nor-
mal and phonologicallydisabledmodels,along with data
from Werker and Tees(1987). The phonologicalimpair
mentsthatwe usedto simulatephonologicaldyslexia pro-
duce identification curves that qualitatively replicate the
Werker and Teesdata. The phonologicallyimpairedmod-
els’ identificationcurvesappeatesssteepandarelessab-
soluteat the endpointscomparedwvith the normalmodels.
Following Werker and Teesand Godfrey et al., the normal
andimpairedmodels’identificationcurvesweresubmitted

to alogistic regressioranalysis;asin their studiesthe im-
pairedsimulations’slopeswerereliably shallaver thanthe
normalmodels’(F(1,22) = 8.6, p < 0.01).

To simulatethe discriminationtask, we examinedthe
processingof tokensthat differ by two intervals in Fig-
ure 21, asin a standardwo-stepdiscriminationtask. Each
steprepresents 10% differencebetweenstimuli; thusall
pairs of stimuli differed by 20%. The model was run
on eachstimulusin a pair using the sameprocedureas
above, anddiscriminationwas modeledby computingthe
euclideardistancebetweerthecomputedutputs.Thisdis-
tancewasscaledby a constanto yield a probabilityof cor-
rectly discriminatingthe tokens: the closerthe euclidean
distanceof the outputs,the more difficult the discrimina-
tion. Thenormalmodelwasusedasa baselineto establish
this constant;it wasfound thatdividing the euclideardis-
tanceby eight yieldeda good matchto the predicteddis-
criminationfunction.

Figure22 presentgheresults.The normalmodels dis-
criminationcurve closelymatcheghe predictedcurve, and
shaws the expectedsharppeakin performancet the cate-
gory boundary(at about60%, asin Figure21), with much
worseperformancevithin thecateyory. Theimpairedmod-
els’ discriminationscores,in contrast,do not matchthose
predictedby their identificationscores. Further the char
acteristicsharppeakin performanceat the boundaryis not
seen. As in the Werker and Teesstudy we performedan
analysisof varianceusinggroup (dyslexic or normal)and
pairing(0-20,10-30,etc.) asfactors,andthedifferencebe-
tweenpredictecandactualvaluesasthedependentariable.
Therewas a reliable effect of group (F(1,198) = 1916,
p < 0.001)andpairing(F (8,198 = 2.3, p < 0.02). These
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Figure22. Predictecandobsenreddiscriminationvaluesfor the normalandphonologicallyimpairedmodels.

resultsmatchthoseobtainedby Werker & Teess two step
conditionanddemonstrat¢éhatthe phonologicallyimpaired
modelsexhibited lessstrongly categorical perceptionthan
thenormalmodels.

BecauseManis et al. (1997) found that the group ef-
fectsthey obseredon theslopeof theidentificationcurves
weredrivenby only a subsebf the dyslexic children,with
mary of the phonologicaldyslexics exhibiting perfectly
normalidentificationcurves,we repeatedhe above experi-
mentsusingonly thenormalandmildly impairedmodelsas
groups. The slopesof the mildly impairedconditionwere
slightly lower thanthat of the normalmodels,but in con-
trastto the abose experimenttherewas no reliable group
difference(F (1,14) = 1.0). The discriminationtest, how-
ever, still yieldeda reliablegroupeffect (F(1,126) = 219,
p < 0.001).

In summary the mild phonologicalimpairmenthad a
significantimpact on readingacquisitionbut not on the
phonemddentificationtask. This resultis consistenwith
a body of findingsindicatingthat dyslexia is not strongly
associatedvith significantly deviant identificationperfor
mance. As the Werker and Teesand Godfrey et al. study
suggestedeffectsof this mild impairmentcanbe detected
using more sensitve measuresuchas phonemediscrimi-
nation. A moreseverephonologicalimpairmentyields ef-
fectson both tasks. This pattern,thoughnot characteristic
of mostdyslexics, is typical of childrenwith SpecificLan-
guagelmpairment(SLI; seeJoaniss& Seidenbay, 1998).
Thesechildren exhibit impairmentsin the use of spoken
language;their identification functions are markedly de-
viant; andthey arealsotypically dyslexic. Thus,phonolog-
ical dyslexiamayrepresenamilderform of theimpairment
seenin mary casef SLI.

A final issue concernsthe relationshipbetweenthe
typesof anomaliesve have usedto createphonologicaim-
pairmentsand currenthypothesesboutdyslexia andlan-
guageimpairment. We createdtheseimpairmentsin two
ways: by modifying the architectureor by addingnoiseto
the computationswithin the phonologicalsystem.Both of
thesemanipulationsreducethe capacityof the network to
encodeaspectof phonologicalstructure,which compro-
misesreadingin specificways. The relationshipbetween
thesetypesof impairmentsand the anomalieghat under
lie phonologicaldyslexia is unknovn. Our modelsarenot
closelylinkedto neurobiologyandsotheseypesof impair
mentscannotbe equatedwith specificbrain mechanisms.
Given that theseimpairmentsgive rise to the right sorts
of behavioral effects,thereis reasonto investigatefurther
what their neurobiologicalcorrelatesmight be. At a be-
havioral ratherthan neurobiologicallevel of analysis,the
simulationscanbeconsideredh light of Tallal's hypothesis
thatdyslexia andlanguagempairmentareassociateavith
a temporalprocessingleficit. Our manipulationsnvolved
changingherepresentationaapacityof thesystemandthe
efficiengy with which patternswere computed.Neitherof
theseinvolvesdirectmanipulationof thetemporalprocess-
ing dynamicsof themodel. Ratherthe effect of bothtypes
of anomaliess to disturbthe model’s temporaldynamics:
themodelcorvergesmoreslowly andlessaccuratelyontar
getpatternsThesimulationssuggesthatit would beuseful
to think of temporalprocessingmpairmentsasoneof the
consequences morebasicunderlyingdeficits.

ReadingDelayDyslexia

Our accountof the “surface” form of developmental
dyslexia is that it reflectsa generaldelayin the acquisi-
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tion of readingskill ratherthana selectve impairmentin
readingexceptionwords or in the “lexical route” In the
early stagesof acquisition,children who are learningto
readnormally are poorerat readingexceptionsthan sim-
ple nonwords.Hencetheir performancdits the patternthat
in olderchildrenhasbeencalled“surfacedysleia” In the
delaypattern,the dysleic child’s performancas like that
of a youngernormalreader This contrastswith the pho-
nological dyslexic pattern,which is not seenin younger
normals. The main point of this sectionis that the delay
patterncan be createdin the modelin seseral ways and
thatthis fact may be relevantto understandinglifferences
amongthesechildren. Oneway is simply to provide less
trainingfor thenormalmodel.Earlierin trainingthemodel
exhibits poorerperformanceon exceptionshannonwords,
comparedo laterin training, whenperformancen excep-
tions (and regular words) exceedsthat on nonwords (see
Figurel0). Thus,likethebegginningreaderthemodelearly
in trainingexhibits the“surfacedyslexic” pattern.This pat-
ternrepresents readingdelaywhenit occursin olderchil-
dren, like the participantsin the Manis et al. and Castles
andColtheartstudies.The modelsuggestshatthis pattern
would resultif childrenwho have normal capacitieqi.e.,
network architectureandability to learn)readlessoftenor
receve lessfeedbackabouttheir readingsothatthey bene-
fit lessfrom it. Thereis goodevidencethatreadingability
is relatedto amountof readingexperience.Stanwich and
his colleaguedave attemptedo assesselative amountsof
readingexperiencd“print exposure”)usingmeasuresuch
asthe Title RecognitionTest (Stanaich & Cunningham,
1992,1993; seealso McBride-Chang Manis, Seidenbay,
Custodio,& Doi, 1993). In thesestudies,print exposure
wascorrelatedvith readingskill evenaftervariationin pho-
nologicaldecodingskill waspartialledout of theregression
equation. Thus, taken with the print exposureresults,the
modelsuggestshatlow levelsof performanceeenn some
dyslexic childrenmay be the resultof impoverishedread-
ing experience Our specificpredictionis thatsuchchildren
will exhibit the surface/delayatternratherthanthe phono-
logical dysleic pattern.

The extent to which the readingdelay patterncan be
attributedto lack of readingexperienceneedsto be inves-
tigatedfurther We do not know whetherthe casesof sur
facedyslexia identifiedin previousstudieswereassociated
with lack of readingexperience. Manis et al. did collect
dataon Stanwich andCunninghans (1992)Title Recogni-
tion Test,but found no differencedetweerthe surfaceand
phonologicalsubgroupson this measure. This finding is
ambiguousijt maybethatmoresensitve measuresf read-
ing experienceare neededput it is also possiblethat the
impairedperformancef the surfacedyslexicsin thatstudy
wasnot dueto lack of readingexperience.As we discuss
belaw, thereareotherwaysto producethe delaypatternin
our model. It would alsobeimportantto investigateurther
thenatureof this putatve impoverishedeadingexperience.
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It couldreflectdifferencesn amountof readingassociated
with culturalor socio-economi€actorsbut it alsomightre-
flecttheineffectivenesd$or mary childrenof somemethods
beingusedto teachreading.

A secondway to createa delayis to usethe standard
architectureandprovide the normalamountof training, but
usea non-optimallearningrate. This creates situationin
whichthemodeldoesnot obtainthenormalbenefitfrom a
givenamountof experience.We examinedthis possibility
by conductingsimulationsin which we variedthe learning
rateparameteof themodel. Thetermlearningrateis used
herefor historical reasonsjt refersto specificparameter
in the learningalgorithm, not the overall rate at which a
network learns,which is affectedby mary otherfactors.
Thegradientcomputationgrom the backpropagatioalgo-
rithm specifythedirectionin weightspacefor the network
to move; the learningrate parametedeterminesow farin
that directionthe weightsshouldbe changed. A learning
ratethatis too large can causethe network to oscillateor
becometrappedin local minima. A learningrate that is
too small cancausea network to take a very long time to
train. While techniquexist for automaticallydetermining
anappropriatestepsize(e.g. Jacobs1988),very oftenthe
appropriatevalueis determinedby trial anderror. Thevalue
we arrivedat for thenormalsimulationsvasp = 0.005. To
createa conditionin which the network is not asableto
profit from trainingexperienceasthenormalmodel,weran
asimulationwith amuchsmallerlearningratep = 0.0001.
All otheraspectf training were identicalto the normal
model. Figure23 shows the results. With alower learning
ratethe network experiencegdramaticallysloved acquisi-
tion of exceptionwords,anda lesserbut still pronounced
impairmenton nonwords.

A third way to producethe delay patternwas explored
by Seidenbeg (1992), who reporteda simulationthat ex-
aminedthe effects of degradingthe orthographicinput to
the SM89 model. The purposeof this simulationwas to
explore how deficits in the encodingof orthographicin-
put would affect learningto read. Suchvisual-perceptual
deficitshave long beenhypothesizedo be a causeof dys-
lexia. The evidencefor suchimpairmentsis inconsistent,
asmight be expectedif this type of impairmentwererela-
tively rare and not the only basisfor readingimpairment.
Seidenbeg (1992) deggradedthe orthographicrepresenta-
tions in the Seidenbeag and McClelland (1989) model by
ensuringthatmoreorthographiaunitswereactive for each
word thannormal. This decreasedhe discriminability of
individual words. Thisimpairmentcreateda generadelay
with poorerperformanceon regular and exceptionwords
andnonwords.

Finally, a fourth way to createa readingdelayis to re-
ducethe model’s capacityto encodeinformationregarding
the mappingfrom orthographyto phonology As we have
obsened,the hiddenunits play animportantrole in theen-
codingof orthographic-phonlogical correspondence3he
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Figure 24. Effectof lower numberof hiddenunitson nonwordsandexceptions.

network musthave the capacityto encodeboth systematic
aspect®f thesecorrespondencemdtheidiosyncrasiesis-
sociatedwith exceptionwords. Although not the focus of
their article, Seidenbeay and McClelland (1989) reported
the resultsof a simulationin which their modelwas con-
figuredwith half the usualnumberof hiddenunits mediat-
ing the computatiorfrom orthographyto phonology This
manipulationhada biggerimpacton the acquisitionof ex-
ceptionwords thanregulars,but they did not examineits
effectson nonword generalization.

We replicatedthe Seidenbeag and McClelland experi-

mentusingthe attractornetwork, reducingthe numberof
hidden units from 100 to 20. Twenty hiddenunits does
notallow the network to learnthe completerainingsetand
sorepresents severedeficit. As before,eightsimulations
wereconductedvith differentinitial randomnumberseeds.
The phonologicalcomponentvas pretrainedexactly asin
thenormalmodel,reflectingthe absencef a phonological
processingmpairment.

Theresultsaregivenin Figure24. Both nonwordsand
exceptionsshav decrementsut, importantly theimpactis
greaterfor the exceptions.Theresultis a “mixed” surface
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dyslexic, shaving aprimaryimpairmento exceptionwords
anda secondarympairmentto nonwords.

Analysisof the Effectsof Reducinghe Numberof Hid-
denUnits. Readingexceptionwordsgenerallyrequiresat-
tentionto larger portionsof the words than doesreading
regularwords: whereasvINT canbe correctlypronounced
by lookingattheonsetv- andrime INT, pronouncingPINT
correctlyrequiresusinginformationfrom the entireword.
The readingof exceptionwordscanbe seenasa seriesof
xor-style problems(Minsky & Papert,1969),in which one
unit’'s statedependon the statesof otherunitsin the en-
vironment.Reducingthe numberof hiddenunits primarily
affectsthe capacityof the network to encodedependencies
that spanmoreletters. Although acquisitionis slowed for
all typesof items, with sufiicient training the model can
eventuallylearnthe simpleandredundanpatternscharac-
teristicof regularwords. Exceptionshowever, continueto
beimpaired.

The greaterdemandsmposedby exceptionwordscan
be quantifiedby developing a measureof computational
work. By measuringthe entrogy of the vowel phoneme
(seeEquation4) acrossall wordsin the training set, we
canderive a measureof how muchinformationis needed
perword to communicatehatvowel. Comparinghis mea-
sureto the conditionalentrogy (Equation5) of the vowel
phonemewith respectto the orthographicvowel, we can
seethe extentto which the orthographiosowel reduceshe
uncertaintyof the vowel phoneme The extentto whichin-
creasingconjunctionsof orthographicinformation reduce
the uncertaintyof the vowel phonemecanbe measuredn
thisway; first measuringhe entropy of thevowel phoneme
H(9), thenthe conditionalentrogy of the vowel phoneme
with respecto thefirst orthographiczowel H(9|X1), then
with respectto the first orthographicvowel andthe letter
thatfollows it H(9'| X1, X2), andsoon for the maximum4
letterscomprisingthe orthographiaime H (9| X1, X2... Xa)

Figure25 plotsthe conditionaluncertaintyof the vowel
phonemeover rimesof differentlengthfor boththe whole
training setanda subsebf thetraining setcontainingonly
regularitems. The uncertaintyof the vowel phonemeavhen
awindow of 3 lettersinto the word body is considereds
essentiallyzerofor theregulars,but still high for the entire
training set. Thus, regularsin generalrequirelessortho-
graphicinformationto disambiguatéheir pronunciations.

Encodinghigherorderdependencieis whatthehidden
unitsarefor, andasFigure 25 suggestsalthoughall types
of wordstendto requirethe capacityto represensuchde-
pendenciesxceptionsaremorelik ely to requiremorethan
3 lettersto be disambiguatedWith fewer hiddenunits, the
capacityof the network to encodeghesedependenciess re-
duced,which hasa larger effect on exceptions.If the net-
work were unableto encodedependenciesovering more
than3 lettersit would still getmostof theregularscorrect
but the exceptionswould be highly impaired. With a more
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Figure 25. ConditionalEntrogy of vowel phonemawith respect
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severe deficit, the capacityof the network to learngener
alizationscovering 3 letterswill becomeimpaired,which
beginsto affect masteryof regularswill suffer aswell. Be-
causenonword performances parasiticon masteryof reg-
ular correspondencethe “mixed” caseshawving impaired
nonword performancenaturallyfall out of greaterdegrees
of impairment. Of course,a network suffering a gradual
reductionin hiddenunits will not suddenlybe unableto
combine3 letters; the network is trying to optimize per
formanceover items by their frequeng, and as suchwill
lose the capacityto attendto large word bodiesin lower
frequeng items(e.g., YACHT) beforehigh frequeng ones
(e.g.,THE).

Comparisongo Behaviorl Results

Having describedhephonologicabndreadingdelayed
simulationsand shavn that they exhibit generalfeatures
of dyslexic performanceywe cannow provide closercom-
parisongo behaioral data. Figure 11 presentedsummary
datafrom the Manisetal. study Thefigureillustratessev-
eral findings. Surface/delaydyslexics were impaired on
bothexceptionsandnonwordscomparedo same-agedor-
mal readersthey were moreimpairedon exceptionsthan
nonwords;andtheir performanceloselyresembledhat of
youngermormalreaders.Phonologicablyslexics werealso
impaired on both exceptionsand nonwords comparedto
same-agedormalreadersthey performedatthesamdevel
on exceptionsand nonwordsbut comparedo both normal
readergroupsthey weremoreimpairedon nonwords;their
performancavasnotlike youngemormalreaders.

Figure26 presentshe datafrom comparableonditions
in our simulations. The meanperformanceof the normal
model,thedelaydyslexic simulationsandthemostextreme
phonologicallyimpairedsimulationswere measuredt 1.5
million trainingtrials. In addition,the normalmodel’s per
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formancewas assessedith fewer trainingtrials (0.5 mil-
lion), whichyieldsperformancesimilar to theyoungemor-
malsin theManisetal. study Thesesimulationresultscap-
tureall of the mainresultsseenin Figure11. Theonly de-
viationsbetweerFiguresl1 and26 arerelatedto thesome-
what lower levels of nonword performancean the model.
Thus, the simulationsreplicatethe kinds of dissociations
betweemonwordsandexceptionsseenin behaioral stud-
iesatapproximateljthe samelevelsof performance.

A final analysisaddressedhe differentdevelopmental
patternsin the phonologicaland delaycases.Manis et al.
(1996) found that whereassurfacedyslexics exhibited be-
havior characteristiof youngernormal readersthe pho-
nological dyslexics exhibited an aberrantpatternnot seen
in normalreadersat ary age. Figure 26 exhibits this pat-
tern, but we canmale the pointin a moregeneralway as
follows. The behaioral datashow that surfacedyslexics’
performancen exceptionwordsandnonwordsis quantita-
tively within therangeof youngemormalreaderswhereas
thephonologicablyslexics' is not. Figure27 shovstheper
formanceof the normal modelsand the surface dysleia
simulationson thesetypesof items. It canbe seenthat
overdifferentlevelsof performancethenormalandsurface
dyslexic modelsshown similar ratios of word andnonword
accurag. In contrastthe curvesfor the phonologicaldys-
lexic simulationsdeviate from thosein the normalandsur
facedyslexic models becausef thelow levelsof nonword
performanceomparedo exceptions.The dataareconsis-
tentwith theconclusiorthatthe surfacedyslexics patternof
impairedreadingis like thatof youngemormalreadersut
thephonologicaldyslexic patternis not.

This patterncanalsobe seenin theresultsof a regres-
sion analysisthat usedthe normalmodels performancdo
predictthe nonword performanceof the impairedmodels.
A regressionwas performedto predictthe normalmodel’s
nonword scoresfrom its performanceon exceptionst? =
0.95, F(1,31) = 288, p < 0.0001). This regressiorequa-
tion wasthenusedto predictthe nonword performancdor
eachof the impaired modelsin turn, given their perfor
manceon exceptions. Figure 28 shavs the resultsof this
analysisat differentpointsin training. The normalmodel
doesa good job of predictingthe surface/delaymodels’
performancethe residualsare small and not much larger
thanfor thenormalmodelitself. In contrastthe phonolog-
ical dyslexic modelsyield larger residuals,indicating that
nonword performances notaswell predictedby exception
performance.Theseresultsobtainat all levels of training.
Thus, the surface/delaymodelsrequiremore training, but
their relative performanceon exceptionsand nonwordsis
like thenormalmodels.The phonologicadyslexic models
areon a differenttrajectory becausef the more extreme
impairmentin readingnonwords.

Themodelprovidesinsightaboutwhy the developmen-
tal patternsdiffer for the two subtypesof dyslexia. Con-
sideragainthe mappingthatthe hiddenunitsmustperform.

With animpairmentin the phonologicahttractors capacity
to represeninformation(phonologicabyslexia), thenature
of thetaskthe hiddenunit layermustsolwe is changedIn-

steadof having to map an orthographicform onto an ap-
proximatephonologicaform whichis thenrefinedinto the
correctpronunciation the output of the hiddenunit layer
mustbe relatively exact. In contrastthe input/outputtask
facingthe hiddenunit layerin the caseof reducedhidden
unitsis thesame It is notthenature of thetaskthatthehid-

denunitsmustsolve thatis changedbut the capacityof the
hiddenunitsto performthat. Thus,in thephonologicatys-
lexic simulationschanginghenatureof thetaskcauseshe
modelto arrive at a solutionthatis differentfrom normal;
in the surfacedyslexic/delaysimulations the taskremains
the samebut the modelarrivesat the solutionmoreslowly,

producinga developmentatielay

Summarnyf Dysleia Simulations

Thebehaioral literaturesuggestswo distinctsubtypes
of developmentaldyslexia, one relatedto a phonological
impairmentand one reflectinga generaldelay in the ac-
quisition of readingskill in the absencef a phonological
impairment. The modelingwork presentedhereaccounted
for thephonologicakubtypen termsof damageo thenet-
work’s capacityto develop highly structuredphonological
representationshis in turn hasanimpacton the pronunci-
ationof nonwordsat mild levels of impairmentandexcep-
tions aswell at more severelevels. Phonologicadamage
affectednotonly therateatwhichthenetworkslearnedand
the asymptoticlevel of performancebut alsothe develop-
mentaltrajectory creatinga deviant pattern. The pattern
thathasbeencalledsurfacedysleia is createdcby ary type
of impairmentthat slows the acquisitionprocessyielding
a developmentadelay We discussedereral wayssucha
delaycouldbeproducedn themodelandit remaindor fur-
therresearcho determinevhich of thesecausess relevant
to particularsubgroup®f children.

Thisaccounis consistentith theresultsof behaioral
geneticstudiesof the heritability of dyslexia thatimplicate
separat@honologicabndnonphonologicalactors(Olson,
Forsbeg, & Wise, 1994). Olsonand his colleagueshave
provided extensve evidenceconcerningthe heritability of
phonologicalcodingskills (Olsonet al., 1989). More re-
cently Olson et al. (1994) reportedsignificantheritability
for afactorthey termedorthographiccoding. The datade-
rive from performanceon an orthographicchoicetaskin
which participantsdecidewhich of two stimuli is the cor-
rect spellingof a specifiedword. The alternatvesare ei-
ther a word and matchedpseudohomophong.g., RAIN-
RANE) or two homophonegPAIR-PEAR). This taskis one
of the few that assessesrthographicknowledge without
introducingphonologicalconfounds. Manis et al. (1996)
found that their surface dyslexic participantsperformed
morepoorly thannormalreadersnthis task,whereagpho-
nological dyslexics did not. It is clear that the kinds of
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impairmentsthat we have hypothesizedo underlie sur

facedyslexia could affect performancen the orthographic
choicetask. The taskinvolvesrememberinghow a par

ticular phonologicalwordform is spelled. The ability to

associatea spoken word with its pronunciationwould be

expectedto dependon factorssuchasamountof reading
experienceability to learn,andvisual encoding.Thusthe

behaioral geneticdataare consistentith the conclusion
that there are separatgphonologicaland nonphonological
impairmentsthat underlie phonologicaland surface/delay
dyslexia, respectiely.

It should be clear that althoughthe several types of
impairmentsrelatedto readingdelay producequalitatively
similar effects on exception and nonword reading, they
malke different predictions about performanceon other
tasks. For example,it shouldbe possibleto obtaininde-
pendentevidenceasto whethersomechildrenwhoseca-
pacitiesareotherwisenormalmerelyreadlessoften. Such
childrenwould be expectedto greatly benefitfrom inter
ventionsthat simply provide additionalexperience. Sim-
ilarly, only the childrenwhosedelayedreadingis related
to alearningproblemshouldexhibit this type of deficit on
othertasksandthey would be expectedo benefitlessfrom
additional experience. We would also expect only some
childrenwho exhibit the delay patternto shov deficitson
tasksrelatedto perceptuakncodingof print. Finally, the
hypothesizedesourcdimitation is harderto independently
establishgiventhatit maybe specificto readingandthere-
fore leave performancen othertasksunafected.Thistype
of deficitmightbeimplicatedby excludingthe otherpossi-

bilities. A child who hasadequatgerceptuabndlearning
abilities who recevesappropriatetraining and experience
yet exhibits a developmentabelay may have a problemof
thistype.

Our simulationsalso examinedthe effects of different
degreesof impairment. Factorsthat affect reading per
formance,suchasthe quality of phonologicalrepresenta-
tions or computationakapacity may vary acrossindivid-
uals. The simulationssuggesthat relatively “pure” cases
of phonologicalor delay dyslexia, in which performance
on only one of the two criteria typesof stimuli is belov
normallimits, areassociatedavith relatively mild forms of
impairment. With more severeimpairmentspoth typesof
stimuli areaffected,creatinga “mix ed” patternthatis most
common. Thesepredictionsare consistentvith datafrom
the Manis et al. (1996) and Castlesand Coltheart(1993)
studies. At present,we ervision only one other way of
creatinga pure pattern: extensie remediationthat hear-
ily emphasizespecificdecodingstratgies. Remediation
that focuseson masteringspelling-soundcorrespondences
or developingasight-word vocalulary maycreatedissocia-
tionsbetweerexceptionword andnonword reading.These
andotherwaysin which childrensremediatiorexperiences
may masktheir underlyingdeficitsarediscussedy Manis
etal. (1996).

The two typesof dyslexia have quite differentunder
lying sourcesandtheir effectsaredifferentin specificre-
spects. However, if one merelylooks at the most severe
surfaceandphonologicablyslexic simulationspothareim-
pairedonreadingbothnonwordsandexceptionwords. This
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raisesa strongcautionarynoteregardingthe clinical diag-
nosisof developmentalyslexic children. The modelpre-
dicts that thesemixed casescan arisefrom very different
underlyingdeficits. It will be necessaryo obtaindatacon-
cerningperformanceon othertasksto differentiateamong
the mary children who exhibit the mixed pattern. This
would seemto be a prerequisiteto implementingremedi-
ation programsthat are relevant to the child’s underlying
problem.Remediatiorpracticesneedto be sensitve to the
differing etiologiesamongdyslexics who exhibit qualita-
tively similar levelsof performancen simpletasks.

4. Effectsof Literagy on
PhonologicaRepresentation

Thefinal simulationsexaminedhow phonologicalrep-
resentationareaffectedby the acquisitionof readingskill.
We have seenthat modelsthat have richer representations
of phonologicalinformation performbetteron the task of
learningto mapfrom orthographyto phonology The main
impactwas on the capacityto generalize,.e. pronounce
unfamiliar letter strings. This capacityplaysanimportant
role in becominga skilled readeranddeficitsin this capac-
ity areseenin mary dyslexics. Theseresultsare compati-
ble with evidencethatprereaderg/ho have developedmore
segmentalrepresentationsf phonologydo betterat learn-
ing to read.

However, other evidencesuggestghat achieving seg-
mental phonological representationss the outcome of
learningto readan alphabeticorthography The evidence
is provided by studiesof literateandilliterate participants

indicatingthatonly literateshavetheability to segmentspo-
kenwordsinto componenphonemegMoraisetal., 1979;
Readetal., 1987;Moraisetal., 1986). On this view, “pho-
nological awareness'taskssuchas phonemecounting or
deletionare highly correlatedwith readingskill because
they requiremanipulatingphonemiaepresentationsndthe
achiezementof suchrepresentations one of the results
of becominga skilled reader Therehasbeenconsiderable
controversyasto whethersegmentalphonologicatepresen-
tationsarea prerequisiteo learningto reador the outcome
of achieving literacy (Cossu,Rossini,& Marshall, 1993;
Liberman,ShankweilerLiberman,Fowler, & Fisher1977;
Morton & Frith, 1993)

An alternatve possibility thatwe canexplore usingthe
simulationmodelis that thereis a reciprocalrelationship
betweerthe developmenif sggmentalphonologicakrepre-
sentationsindlearningto read(Morais,Alegria,& Content,
1987). In the courseof learninga spolen languagechil-
drendevelop representationsf higherorderrelationships
amongfeatureghat supportsegmentalphenomenauchas
beingableto deletea phonemdrom aword. Childrenwho
have had more succesat developing suchrepresentations
arebetterpreparedor learningto read. The development
of suchrepresentationis greatlyacceleratedhowever, by
exposureto alphabetionriting systems.

We have alreadyshown (in Sectionl) that an attrac-
tor network trainedto encodephonologicakepresentations
of wordsdevelopsknowledgeof relationshipsamongfea-
turesand seggments. In Section2 we traineda model to
associaterthographiccodeswith thesephonologicalrep-
resentationsThe training procedurenvolvedinterlearing
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readingandlisteningtrials that differedin termsof which
weightswere adjusted. On readingtrials, the modelwas
trainedto computea phonologicaktodefor anorthographic
inputandall weightsweremodified. On listeningtrials the
modelwas trained on the patternretentiontask and only
the weightswithin the phonologicalattractorwere modi-
fied. Thus,the weightswithin the phonologicalapparatus
hadto achieve valuesthat allowed the network to perform
both tasks. The fact that theseweightswere affected by
their role in the readingtask providesthe basisfor effects
of literacy on phonologicakepresentation.

Pre- andPostLiterate Analysis

The designof thesesimulationsis very simple: we ex-
aminedthe phonologicahttractometwork beforeandafter
training on the readingtask. The pre-literatemodel con-
sistedof the attractornetwork trainedasdescribedn Sec-
tion 1. The post-literatemodelwasthe sameattractornet-
work aftertrainingonthereadingtask. Differencedetween
the two are effectsof literagy on phonologicalrepresenta-
tion. We alsoincludeda third conditionasa control. Train-
ing on the readingtaskinvolved additionallisteningtrials
thatamountedo 10 million extratrials like the onesin the
pre-literatephase. In orderto assessvhetherary differ-
encesbetweenthe pre- and post-literatenetswere merely
dueto the numberof phonologicaltraining trials, a third
conditionwasincluded:theovertrainedlliterate condition,
which wasthe pre-literatemodeltrainedfor an additional
10 million listeningtrials.

PatternCompletion Thepatterncompletiontask(Sec-
tion 1) was repeatedusing the the phonologicalattractor

networksassociateavith the 3 conditionsdescribedabove.

Recall that the procedureon this test involved deleting
one featureof eachphonemein every word and examin-
ing how the modelrestoredthe patternafter several time

ticks. As before eightsimulationsvereusedin eachcondi-
tion. Theliteratenetwork’s overall sumsquarecerror (Ssg

in the patterncompletiontask was lower (sse= 0.0732)
than either the pre-literatenetwork (sse= 0.0824) or the
network that only receved additional phonologicaltrain-

ing (sse= 0.0804). This condition effect was significant
(F(2,21) = 18, p < 0.0001). This resultindicatesthat the
readingtask allowed the network to learnmore aboutthe
relationshipdbetweerfeatureghandid eitherphonological
pretrainingor additionalphonologicaltraining.

S@mentRestoation. The patterncompletiontest as-
sessedhe network’s ability to completeanindividual fea-
turewithin anotherwiseintactword. We now considerthe
modelscapacityto restoreentiresegmentsandshaw thatits
performances greatly affectedby training on the reading
task. The testwasbasedon the phonemerestorationphe-
nomenon(Warren,1970). In suchstudies,the participant
typically hearsaword or sentencavith aphonemeeplaced
by an extraneousoise(e.g.a cough,buzz, or hiss). The
auditoryillusion thatparticipantgeportis thatthedistorted
word wasintact; participantofteninsistthatthe noisewas
in additionto or outsideof the word (seeWarren, 1996,
for anoverview). Someof theserestoratioreffectsinvolve
thetop-dovn useof semanticandpragmaticcontextual in-
formation,phenomendeyondthe scopeof the presentre-
search.Our testwasmorenarrovly focusedon the extent
to whichthe modelcouldfill in segmentsof isolatedwords
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basedonly on phonologicaknowledge. If a phonemeén a
word was distortedby noise,how likely wasthe network
to restorea phonotacticallylegal phonemegiventhe con-
straintsof the phonologicakrnvironment?

Eachof the 6 phonemesegmentswastestedn turn. On
eachtrial, a word waschoserfrom the training setandthe
input units were correctlyinitialized to the word’s phono-
logical form, exceptfor the 11 featuresin the deletedseg-
ment. Thosefeaturesveresetto randomvaluesn therange
(—0.25,0.25). Thevaluesof all correctly-specifiefeatures
wereclamped. The 11 initially randomfeatureswere left
free to be changedby the network. The network wasrun
for thestandardt ticks, atwhich time the testsggmentwas
evaluatedaccordingto the nearestneighbormetric. This
testwasrepeatedor all wordsandall six phonemeposi-
tions.

Datawerescoredin termsof whetherthe phonological
outputwas phonotacticallylegal or illegal. The phonotac-
tic legality of the phonemedbeingrestoredwvasdefinedin
termsof onsetsyowelsandcodas:if thephonemehatwas
randomizedvasin the onsetthenthe resultingonsetafter
processingvastestedagainstll otheronsetsn thetraining
set. If it resultedin an onsetthat existedin the training
set, thenit was scoredas a phonotacticallylegal restora-
tion. For example,if the /r/ in the word /brejd/ wasran-
domized andtheresultingoutputwas/blejd/, the onset/bl/
wascomparedo all otheronsetsn thetrainingset. Since
/bl/ exists as an onset,that restorationis a legal one. If,
in contrast,the network restoreda /bkejd/, that would be
scoredasillegal, sincethe onset/bk/ doesnot exist in the
training set. Similar testswere usedfor restoredsggments
in the vowel/diphthongslots,andthe codaslots.

Figure 29 depictsthe percentageof illegal responses
acrosssggmentfor the phonologicalattractornetwork, the
overtrainediliterate network andthe literate network. For
all phonemeslots,all networkswereableto producealegal
phonemdrom thelocal environmentmostof thetime. The
rangeof phonemeshat constitutea legal blendin English
is in fact quite constraining.If a randomphonemsas sub-
stitutedfor the network’s output, thenacrossall segments
the resultis phonotacticallyillegal 72% of the time. The
modelsperformmuchbetterthanchanceindicatingthatthe
phonologicalattractorhasabsorbedknowledgeof English
phonotactiaegularities.

The networksthatwerenot trainedon the readingtask
exhibit imperfectknowledgeof phonotacticsthey produce
phonemeblendsthat no humannative spealer of English
would make, particularlyin the coda. Theliteratenetwork,
however, yielded better performancethan either the pre-
literate or overtrainednetworks, asis shaovn in Figure 29.
Noteespecialljtheimprovemenin performancenthesec-
ondvowel positionandcoda,onwhichthe non-literatenet-
works had performedmost poorly. This is an important
resultbecausdhe test specificallyassessesffectsrelated
to sggmentalphonologicalstructure. After training on the
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Table9

Mean Squaed Difference in Weight Magnitude
Between Literate and Overtrained Non-Literate
Networks

Connection  Squaredlifference
within onset 0.067
onset/ cleanup 0.055
onset/ rime 0.020
rimetorime 0.096
rime/ cleanup 0.117

patternretentiontask, the phonologicalattractornetwork
hadatendeng to replacemissingsegmentswith otherwell-
formedseggmentsput thetendeng wasmuchstrongenmafter
trainingonthereadingtask.

Magnitudeand Distribution of Weights

Theweightsin the networkswereexaminedin orderto
investigatewhy performanceon the above tasksimproved
in theliteratenetwork. Onefindingwasthatthetheaverage
magnitudgabsolutesalue)of theweightsin theliteratenet-
work’s phonologicalcomponent(0.250) was significantly
higherthaneitherthe pre-literatenetwork’s (0.168)or the
overtrainedlliterate network’s (0.199)(F(2,14790 = 681,
p < 0.0001).Figure30 providesdataaboutdifferencede-
tweenthe weightsin the post-literateand overtrainedillit-
erateconditions.Thefigure shavs the averagesquaredif-
ferencebetweenthe magnitudeof the weightsin the two
nets,averagedover phonemesThe six phonemeegments
andthe cleanupunit groupareshowvn in a matrix, with the
“from” connectionshavn asrowsandthe“to” connections
shavn ascolumns.

Visually, it appearshatlargerdifferencesrein therime
(vowel andtrailing consonants) The projectionsfrom the
rime to the cleanupunits and back underwentparticularly
largechangesThediagonalof Figure30indicateghecon-
nectionchangesvithin a sggment;thatis, theweightsfrom
a sgmentto itself. Thosesectionsunderwenevengreater
changeoverall thanthe connectiondrom one part of the
rimeto another

Table 9 provides summarydata concerningdifferent
typesof weights. The biggesteffectswere on the weights
betweerrime andcleanuptheweightswithin therime,and
the self-connectionsThe effectswithin the onsetandfrom
onsetto rime weresmaller Theseresultssuggesthatthe
weightswithin the phonologicalattractorwere affectedby
literagy in waysthatpreferentiallychangeawithin-segment
weightsover inter-sggmentalweights,andwithin-rime and
within-onsettonnectionsverthosecrossingheonset-rime
boundary Theresultsareconsistentvith evidencesuggest-
ing thatlearningto readresultsin increasedsensitvity to
onsetandrime units(Treiman,1992).
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Figure30. Differencebetweerweightsin literateandovertrained
literatenetwork, averagedover sgment. Therows arethe “from”
segmentsof the connectiomrmatrix, andthe columnsarethe “to”
s@gments.Dark areasshav greatesthange Eachcell is scaledto
magnitude0.5.

RhymeDetection To testwhetherthe literate network
wasmoresensitve to the onset-rimestructureof words,we
examinedthe model's performancen rhymingwords. All
pair of wordsin thetraining corpusthatrhyme(N= 22,175
pairs)wereidentifiedalgorithmically As acontrol,anaddi-
tional setof 22,175pairsof nonrhymingwordswascreating
by permutinghelist of rhymingwords. For eachword pair,
the phonologicalunits were initialized and clampedwith
the soundpatternof oneword in the pair. The phonolog-
ical network wasrun for 5 ticks without influencefrom the
readingcomponentTheactiity valuesof thecleanupunits
attheendof cycling wererecorded.The network wasthen
initialized with the soundpatternof the secondnemberof
thepair, it wasrun, andtheactvity of thecleanupunitswas
alsorecorded.Thedistancebetweerthe cleanupunit activ-
ity for thetwo wordswascomputed Thiswasdonefor each
of the rhyming and control pairs, for the literateandnon-
literate network. Thesedistancesvere analyzedin a 2x2
design,usingliteracy of network andpairtype (rhymingor
control)asfactors.

The resultsare summarizedn Table10. A strongef-
fectof rhymingwasobtained:wordsthatrhymewereover-
all much closerin their cleanupunit activation statethan
werethe controls. Therewasalsoan interactionbetween
literacy andrhymewasalsoobsened(F(1,44348 = 1179,
p < 0.0001). Theinteractionis dueto the factthatthelit-
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Table10
Literateand llliter ate NetworkRhymeSimilarities
Pair
Rhyme Control
Literate 4.48(1.76) 10.12(3.11) 5.64

llliterate 4.74(1.79) 9.96(2.58) 5.22
Note Meansareshawvn, with standardleviationsin parenthesis.

Difference

eratenetrepresentechymesmorecloselythantheilliterate
net.

Table11
Orthographiclnfluenceson RhymeDetection
Pair

Similar  Dissimilar

Rhyme Rhyme  Difference
Literate 4.52(1.72) 4.43(1.82) 0.09
lliterate 4.76(1.72) 4.72(1.87) 0.04
Orthographic 5.28(2.10) 5.61(2.28) -0.33

Presentation
Note Meansareshavn, with standardleviationsin parenthesis.

The next questionis how literagy affected the rep-
resentationof similarly spelled (e.g., KITE-BITE) and
dissimilarly spelled (KITE-NIGHT) rhymes. Our ini-
tial intuition was that the effect of training on the
orthography-phorology taskwould be to causethe pho-
nologicalrepresentationsf dissimilarly spelledrhymesto
differ morethanthe similarly spelledrhymes.This predic-
tion wasbasedon a study of college studentparticipants’
rhyming judgmentsby Seidenbeg and Tanenhaug1979).
They foundthat,with auditorypresentatiomf stimuli, par
ticipantstook longerto judgethattwo dissimilarly-spelled
wordsrhymedthantwo similarly-spelledrhymes. Onein-
terpretatiorof this resultis thatthe phonologicarepresen-
tationsof dissimilarlyspelledrhymeddiffer morethanthose
of the similarly spelledrhymesbecausef theinfluenceof
orthographicknowledge. The 22,175rhyming pairs used
in the previous analysisweresplit into pairsthatsharethe
sameorthographicword body (12,416)and thosethat do
not (9,759). Thesewordsweretestedfor similarity in the
samemannerasthe rhymedetectiontest. The resultsare
summarizedn Table11l. Therewasareliableeffect of or-
thographybut it wasbecausghe literatenetwork wasrep-
resentingdifferently spelledrhymingwordsmore similarly
to eachotherthanthe similarly spelledwords.

Insteadof pulling the representationsf dissimilarly-
spelledrhymesaway from eachother, the phonologicalat-
tractoris apparenthcompensatingpr the orthographidif-
ferences. The mappingfrom orthographyto phonology
(i.e., the input to the phonologicalattractornetwork from
orthography)is more similar for similarly-spelledrhymes
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than dissimilarly-spelledrhymes. Nonethelessall three
words rhyme. Thus, the effect of learningto readis to
separatealissimilarly-spelled-hymeswhich the phonolog-
ical cleanupunitshave to counteracfor the netto corverge
onthesamerhymerepresentations.

If this accountis correct,thenthe phonologicaldiffer-
encesbetweensimilarly and dissimilarly spelledrhymes
shoulddependon whetherthey are presentechonologi-
cally or orthographically Table11 alsopresentslatacon-
cerningthe distancedetweenthe phonologicalrepresen-
tationsof similarly and dissimilarly spelledrhymeswhen
thesecodeswere computedfrom orthography With or-
thographicinput, similar rhymesare closerthandissimilar
rhymes.With phonologicalnput,thepatterris theopposite
in boththe literateandilliterate nets;the effect s largerin
theliteratenet. Thesedataindicatethatphonologicalepre-
sentationsn theliteratenetareshapedy thefactthatthey
arealsothetargetfor thereadingtask.

Returningto the Seidenbay and Tanenhaug1979)re-
sults, the model suggestghat the fact that dissimilarly-
spelledchymesarehardetto judgeasrhymeghansimilarly-
spelledrhymesis not dueto differencesn the similarity of
their phonologicarepresentationsRathertheeffect seems
to reflect the feedback(“resonance”: Van Ordenet al.,
1990) betweenphonologyand orthographythat occursin
afully interactve system.In therhymingtasksparticipants
hearfamiliarstimulithatrapidly activateseveraltypesof as-
sociatednformation,includingmeaningandspelling. This
informationin turn feedsbackon the phonologicakystem.
We have notimplementedhis feedbackin our model, but
it hasbeenassumedy this theoreticalframeavork since
Seidenbeg andMcClelland(1989);otherevidencefor this
type of feedbackis provided by Stone,Vanhg, and Van
Orden(1997).

Discussion

By examiningthephonologicatomponenbf themodel
with andwithouttrainingonthereadingaskit waspossible
to examinewhetherthe readingtaskchangedherepresen-
tationof phonologicalnformation. Theweightsin theliter-
atenetwork werelargerthanin the othernetworks,indicat-
ing thatit hasdevelopedstrongerphonologicalattractors.
The changego the weights producedbetterperformance
onfeatureandsggmentatiorrestoratiortasksandsharpened
therepresentationf therime. Additionally, rhymingwords
weremore similar to eachotherin the literate modelthan
thenon-literateones.Orthographidnfluencesvereseeron
the phonologicakepresentationreflectingthe differing de-
mandsof the readingtask: the phonologicakepresentation
compensatetbr differencesn spellingof rhymingwords.

The resultswe have describedn this sectionare pre-
liminary in thatwe have not exhaustvely examinedall of
the waysin which the readingtask affectedphonological
representationHowever, this wasthefirst attemptto pro-
vide a computationallyexplicit accountof how phonolog-
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ical representationmight be shapedy their participation
in readingandit opengheway towardaninterestingsetof
issueghatcanbe pursuedn futureresearch.

5. GeneraDiscussion

We have describedhe resultsof connectionissimula-
tions addressingseveral issuesconcerningthe representa-
tion of phonologicalkknowledgeandits role in learningto
read.Themodelthatwe emplojedwasbasedntheframe-
work introducedby Seidenbay andMcClelland(1989)and
subsequentlgxtendedby Plautet al. (1996). Our further
extensioninvolved using an attractornetwork asthe pho-
nologicalrepresentatioandexploring normalandatypical
developmenbf readingskill. Themainresultsof thesimu-
lationscanbe summarizedsfollows:

1. Phonologicalrepresentation.The phonologicalat-
tractor architectureacquiredknowledge of the segmental
structureand constrainton sequencesf phonemedbased
on exposureto phonologicalword forms. This knowledge
allowedthe modelto fill in missingfeaturesandsegments
in realisticways. Our primaryinterestin this aspecbf the
modelwasin providing a morerealistictarget for the or-
thographyto phonologymappingtask;therepresentatiors
limited in variousways. It would nonethelesbeinteresting
to pursuefurther the useof this type of architectureasa
phonologicalrepresentation.The testsof cateyorical per
ceptionthat we have describedvereaninitial stepin this
direction.

2. Learningto read. Themainfindingherewasthathav-
ing a phonologicalattractorarchitecturefacilitatedlearn-
ing the orthographyto phonologymappingtask; however,
phonologicalknowledgedid not have to bein placeprior
to readingacquisitionbecauset could be acquiredvery
rapidly anyway. The simulationsconfirm that the quality
of phonologicalrepresentationmainly affects the ability
to generalizenot the acquisitionof a finite readingvocab-
ulary, assuggestedy Seidenbeg and McClelland (1990)
andPlautetal. (1996).

3. Developmentabyslexia. Two typesof developmen-
tal dyslexia were simulatedby introducingdifferenttypes
of anomaliesn the model. Phonologicaldyslexia derives
from animpairmentin phonologicakepresentatiothathas
agreatereffecton nonword generalizatiothanon learning
thetraining vocalulary. We provided analyse®f why this
effect obtained:degradingthe phonologicalepresentation
causesheorthographyto phonologypartof the network to
overfitthetrainingdata,mpairinggeneralizationA second
typeof dyslexiarepresentagenerallelayin theacquisition
of word processingskills. The simulationssuggesthatthis
kind of delaycanhave severalcausesincludinga shortage
of computationalesourceslack of experiencepor failures
to learnefficiently from experienceThis behaioral pattern
hassometimedeentermed‘surfacedyslexia,” but thisis a
vestigeof thedual-routetheorythatwe have abandonetye-
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causeit incorrectlyimpliesthatthe impairmentis specific
to exceptionwords, it missesthe similarity betweenthese
childrensbehaior andthatof youngemormalreadersand
it doesnotderive from animpairmentto a“lexical” route.
4. Effectsof literacy on phonologicalrepresentation.
Finally, we presentedgimulationsin which the acquisition
of skill in translatingfrom orthographyto phonologyhad
animpacton phonologicalrepresentatioitself, consistent
with otherevidencethatthe formationof sggmentalphono-
logical representationmay resultin part from learningto
readanalphabetiorthography

Conclusions

The work we have describeds partof anon-goingef-
fort to developa general,computationallyexplicit account
of visualword recognition,normalandatypicalacquisition
of this skill, andimpairmentsthat are causedoy brainin-
jury. Our researclstrateyy is to develop modelsthat ac-
countfor importantcharacteristicef behaior usingtheo-
retical andcomputationaprinciplesthataregeneralrather
thanspecificto thereadingdomain. The principlesutilized
in the presentesearcharethe sameonesasin Seidenbey
andMcClelland(1989)andPlautet al. (1996). Themodels
have evolvedaswe discorer moreaboutthe natureof word
recognitionin readingaboutthepropertieof connectionist
networks, and aboutthe limitations of implementednod-
els, but the theoreticalframeavork hasremainedthe same.
The presentwork contributesto understandingeadingac-
quisitionanddyslexia bothby providing acomputationally
explicit accountof phenomenahat hadbeendescribedhy
others(e.g.,effectsof phonologicaimpairmenton reading
acquisition)and by providing new insightsaboutreading
phenomenége.g.,the cause®f differenttypesof dyslexia).
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