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Abstract

Common vowel inventories of languages tend to be bet-
ter dispersed in the space of possible vowels than less
common or unattested inventories. The present research
explored the hypothesis that functional factors cause this
preference. Connectionist models were trained on differ-
ent inventories of spoken vowels, taken from a natural-
istic corpus. The first experiment showed that networks
trained on well-dispersed five-vowel sets like [i e a o u]
learned the inventory more quickly and generalized bet-
ter to novel stimuli, compared to those trained on less
dispersed vowel sets. Experiments 2-3 examined how
effects due to ease of perception are modulated by fac-
tors related to production. Languages tend to prefer front
vowel contrasts over back vowels because the latter tend
to be produced with more variability. This caused net-
works trained on an [i e a u] inventory to perform better
than those trained on [i a o u]. Thus both acoustic sepa-
ration of vowels and variability in how they are realized
in speech affect ease of learning and generalization. The
results suggest that acoustic and articulatory factors can
explain apparent phonological universals.

Introduction
Universal tendencies in languages are often cited as evidence
that at least some of language’s structure is innate, rather
than learned. One such pattern is the overwhelming tendency
for vowel inventories to be organized into acoustically well-
dispersed and symmetrical forms. For example, there are
many more three-vowel languages with a triangular [i a u]
inventory than the more lopsided [i a o], or worse [@ e a] (see
Figure 1). This tendency holds for inventories with any num-
ber of vowels. Figure 1 represents prototypic realizations of
vowels; as we will explore later, vowels deviate from these
prototypes to varying degrees in actual production.

Formal phonology attributes these phenomena to principles
of feature markedness (Chomsky & Halle 1968; Clements &
Hume 1995): less marked vowels like /i/ and /u/ are common
among the world’s languages because their feature specifica-
tions are simpler than more highly marked vowels like /O/ or
/y/. The optimality of a phoneme inventory thus depends on

the markedness of its constituents. One problem with this ap-
proach is the lack of independent criteria for deciding what is
considered “marked.”

An alternative approach seeks to explain phonological pat-
terns in terms of phonetic factors including ease of discrim-
ination and precision of production (Ohala 1990). For ex-
ample, the more easily a group of vowels are to discriminate
from each other, the more likely they are to make up an actual
vowel system. This theory has been explored using math-
ematical models based on acoustic properties of vowels to
predict the optimal sets for inventories of different sizes (Lil-
jencrants & Lindblom 1972; Bo¨e, Schwartz, & Val´ee 1994).
Because a vowel’s quality is determined by the position of
its formants in the acoustic spectrum, such models calculate
two vowels’ contrastiveness as the distance of their respective
formants.
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Figure 1: Prototypical locations of vowels in formant space. The
dark line indicates the space of possible vowels, given articulatory
constraints. Frequencies are plotted in Hz.

The purpose of the present research was to use connection-
ist networks to explore the hypothesis that languages tend to
favor certain vowel sets because they are easier to perceive
and produce. Vowels that are more distinct from one another
acoustically will be easier to discriminate, easier to learn, and
promote better generalization to novel items. Using connec-
tionist networks, rather than the mathematical models used in
previous research, allowed us to investigate learning and gen-
eralization directly. The first experiment compared the per-
formance of networks trained on acoustically well-dispersed



and poorly-dispersed inventories. Experiments 2 and 3 ex-
plored the role of variance in how vowels are produced in
speech, and how this biases the world’s languages towards
front vowels.

Experiment 1
Of the many languages of the world that use five vowels, over
90% of them form the familiar triangle of [i e a o u] (Mad-
dieson 1984). Less common inventories tend to differ from
this set by only one or two vowels. In contrast, no vowel
system is made up of only back vowels, or only front vow-
els; such inventories fail to use the entire formant space of
vowels and as a result, vowels in these sets are more difficult
to distinguish. We hypothesized that poor dispersion would
impair the rate with which a simple connectionist network
would learn the vowel sets and generalize to novel stimuli.

Method
All inventories used in this experiment have five vowels (Ta-
ble 1). The first two sets were variations of the typical
[i e a o u] type: theaeiouset is the most common one, with
58 reported cases (Maddieson 1984), while thenorm5inven-
tory represents a slightly less common one, represented in
13 of the world’s languages. Theschwaset is very uncom-
mon: only two languages use such an inventory. Finally, the
front5andback5inventories were made up of either five front
or back vowels, and are completely unattested in the world’s
languages.

Attested Sets
norm5: i u

E O

a

aeiou: i u
e o

a
schwa
(less common): i u

e @

a
Unattested Sets
front5: i Ì eE æ back5: u U o O a

Table 1: Vowel sets used in Experiment 1.

Between 20 and 64 instances of each vowel type were
extracted from the DARPA TIMIT Acoustic-Phonetic Con-
tinuous Speech Corpus1, made up of waveforms of elicited
speech from different speakers of American English. Only
American English speakers from a single dialect region
(‘North Midland’) were used. Each 180 ms. vowel waveform
was converted to a matrix of 2032 spectral coefficients, us-
ing a Fourier Transform. Each coefficient corresponded to
the amplitude of a narrow frequency band for a given point in
time. By transforming these coefficients to the 0-1 scale, we
obtained the coefficients for each vowel, which provided the
input activations of a feedforward network. The network’s

1The TIMIT database does not contain an equal number of each type of
vowel, so all available instances of each vowel were used.

output consisted of 11 nodes, each corresponding to a differ-
ent possible vowel. All networks also had a hidden layer of
30 units.

Each of the five sets of vowels were trained on three net-
works, for a total of 12 networks. On each training trial,
the network was presented with the spectral data from a ran-
domly selected instance of a vowel. The probability of each
vowel type was held constant, so that the network received
an equal number of training trials for each type. The network
was trained to map the spectral matrix onto the correct output
vector, using the backpropagation algorithm to adjust connec-
tion strengths.2 One vowel was presented at each trial, and all
networks were trained on each inventory for 100,000 trials.

Results
To assess the rate at which vowel sets were learned, the pro-
portion of correctly learned training vowels was examined at
each 10K training trials. Performance was assessed relative to
a criterion of 95% correct on the training set, using a nearest-
neighbor scoring method. Thenorm5networks reached this
criterion by 30K trials, while theaeiouandschwanetworks
reached it by 40K trials. The unattestedfront5set took much
longer, 70K trials, while theback5network never reached cri-
terion: its asymptotic rate of 92% correct vowels was attained
at 90K trials.

We also used a set of testing stimuli to assess each net-
work’s generalization to novel tokens. This set consisted of 6
instances of every vowel type in the network’s training inven-
tory, also taken from the TIMIT database. The novel vowels
were presented to the networks, and the difference between
the expected output and the actual output was calculated, us-
ing a sum squared error (SSE) formula. Figure 2 shows the
mean SSE’s and standard errors of each network type on the
testing sets. Results show that the attested networksaeiou
andnorm5had faster learning rates, indicated by a steeper
initial slope, and settled into a lower overall error score when
fully trained. The unattested inventoriesback5andfront5, on
the other hand, had much higher error values. Theschwaset
had lower error than these unattested sets, though error was
not as low as the better-attested sets.

The higher SSE’s in the unattested sets were due to both a
greater number of incorrectly identified vowels in the training
set, and the fact that these networks failed to learn one of
the training vowels altogether. A vowel-by-vowel analysis of
each network type’s performance is plotted in Figure 3. The
height of each bar represents the number correct of 6 testing
vowels of each type. In the two unattested inventories, one
vowel is completely missing, indicating that a contrast has
been neutralized. Overall bar heights also tend to be lower,
indicating a higher overall rate of incorrect responses.

Discussion
The main finding from the simulations was that the attested
vowel sets were better learned and promoted better general-

2The learning rates and weight ranges for all networks in this paper were
set at 0.01.
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Figure 2: Mean sum squared error on generalization sets for each
vowel set, over time. Data are averaged across 3 different simula-
tions for each set.
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Figure 3: Number of correct responses for each network type at
asymptote, broken down by individual vowels in the testing sets.

ization than the unattested sets. Given the architecture that
was used, the unattested sets could be not be learned; one
vowel in each set was unlearned and mean SSE was increas-
ing rather than decreasing with additional training.

These results indicate that connectionist networks, like hu-
mans, show a preference for vowel inventories that are acous-
tically well-dispersed. Moreover, the model’s relative per-
formance on the 3 attested vowel sets corresponds to their
relative frequencies in the world’s languages. Thus, the sim-
ulations accounted for both differences between possible and
impossible vowel inventories and differences within the pos-
sible sets in terms of relative learnability. The model’s be-
havior was shaped by two main constraints. First, because
there is considerable variability in how vowels are realized
in speech, the model must develop representations of vow-
els that allow it to correctly classify many different stimuli as
instances of the same type. Second, the model must also be
able to accurately differentiate between instances of different
types. The vowel inventories that are learnable are thus ones
that allow both of these demands to be met simultaneously.
The model’s relatively accurate performance on novel exam-

ples suggests that it developed prototype-like representations
that allowed accurate classification of novel stimuli that devi-
ated from previous examples. Humans also exhibit this ca-
pacity, as demonstrated by phenomena such as categorical
perception (Liberman, Harris, Hoffman, & Griffith 1957).

The learning and generalization performance of these mod-
els underscore the relationship between language acquisition
and language processing in humans. There is an intimate con-
nection between factors influencing the ease with which chil-
dren can acquire a hypothetical inventory, and the efficiency
with which it can be processed.

In this experiment, none of the attested sets were learned
perfectly, but it should be noted that vowel acquisition and
recognition normally rely not only on acoustic cues, but also
on local phonemic context, lexical knowledge, and discourse
information. The conditions under which the networks were
trained were relatively impoverished insofar as none of these
additional sources of top-down constraint were available.

In summary, the results of the first simulations are compat-
ible with linguistic data showing that vowel inventories that
are more highly dispersed are more common than those that
are less highly dispersed. Unlike formal theories of marked-
ness, however, our models did not rely on explicit feature hi-
erarchies to explain these facts; rather, they derive from how
the models learn given the task they have been asked to per-
form and the nature of the input.

Experiment 2
Although models like Lindblom’s (Liljencrants & Lindblom
1972) stress acoustic distance between vowels, it is also im-
portant to consider facts about how they are actually realized
in naturalistic speech. In particular, vowels are produced with
differing amounts of variability, which also affects learnabil-
ity. Consider the 4-vowel inventories: the UPSID database of
language inventory patterns (Maddieson 1984) lists 12 four-
vowel languages with the vowels [i e a u] (the most frequent
four-vowel inventory), but only two with [i a o u]; the dif-
ference between the two is the choice of a mid vowel. The
greater number of languages containing the [i e a u] inven-
tory might imply that this set is better dispersed and therefore
easier to learn, but in fact, the two are equally dispersed; look-
ing back at Figure 1 it is clear that the acoustic space between
/i/ and /e/ is roughly the same as between /u/ and /o/.

Theories based on acoustic differences between idealized
vowels provide no basis for explaining the difference in the
distributions of these vowel inventories. However, differences
in the variability with which vowels are realized in speech
may be what causes a preference towards front vowel con-
trasts. Beckman et al. (1995) explain that precise articulation
of high front vowels is easier to obtain than for the equivalent
back vowels, resulting in a smaller amount of F1 variance in
vowels like /i/, compared to /u/. This is because high front
vowels like /i/ can be produced with great precision by stiff-
ening the genioglossus muscle, and propping the tongue later-
ally against the dental ridge. This prevents it from falling into



the domain of /e/, facilitating the contrast between the two.
The vowel /u/ cannot be produced similarly, since the den-
tal ridge does not extend far back enough; as a result, tongue
height cannot be as accurately controlled. This means that
back vowels like /u/ or /o/ are more likely to overlap.

We hypothesized that the increased variance in back vow-
els would affect discriminability, since /u/ and /o/ are more
likely to have overlapping distributions. Consequently, the
listener’s ability to perceive them as different should also be
weaker than in front vowels. We tested this by training simple
networks on two realistic four vowel inventories: [i e a u] and
[i a o u]. The prediction was that the greater variability of /u/
would yield poorer performance on this second set.

Method
Two new vowel sets were created using waveforms extracted
from the TIMIT database. The first set,front4, consisted of
different instances of the vowels [i e a u]. The second set,
back4, consisted of the vowels [i a o u]; the first inventory
is the more frequent one. The training method was similar
to the previous experiment, using the backpropagation algo-
rithm to adjust weights after each presentation of a random
vowel from the input set. Because the number of vowels to
encode was smaller, and the anticipated effect is subtle, 20
hidden units were used for these simulations. Three networks
were trained on each inventory.

Results
The proportion of correctly learned training vowels was as-
sessed at 10K-trial intervals. Criterion was set at 95% correct
on training vowels. The networks trained on thefront4 in-
ventory took an average 30K training trials to reach criterion.
Networks trained on theback4inventory needed 40K trials.
All networks attained perfect scores by 50K trials.

To test the networks’ ability to generalize to novel vowels,
a set of 10 vowels of each type (total = 40) was created for
each network type. Each testing vowel was presented to the
network at increments of 10K trials. The mean SSE across
three runs of each network and standard errors are plotted in
Figure 4. As with the training set, performance for thefront4
set was slightly better than theback4set at some points, al-
though this difference quickly disappeared. Asymptotic error
rates for the two networks were identical.

Discussion
The results did not provide strong support for the hypothe-
sis that the less attestedback4would be harder to learn be-
cause of the variability associated with vowel /u/. It is hard
to see how small differences observed between the vowel
sets would translate into large differences in the frequencies
with which they occur in languages. In considering these re-
sults, we wondered how the vowel samples we took from the
TIMIT database related to the idealized vowels illustrated in
Figure 1. Acoustic analyses were performed on the training
vowels, by calculating mean formant values for each vowel

0 2 4 6 8 10

Training Trials (x 10,000)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
S

S
E

back4 (less attested)
front4 (attested)

Figure 4: Mean Sum Squared Error scores (and standard errors) for
thefront4andback4vowel sets, over the course of training.

type. This revealed an interesting pattern in the back vow-
els of American English speakers: rather than producing /u/
and /o/ with the very low F2’s usually observed in languages,
TIMIT speakers produced back vowels that were relatively
unrounded and fronted, resulting in F2’s that were quite high
(Figure 5). By fronting and unrounding /u/ to a greater ex-
tent than /o/, the acoustic overlap of these two vowels was re-
duced (Figure 6), enhancing the mutual distinctiveness of /u/
and /o/. As a result, /u/ and /o/ had less overlap than expected
based on idealized representations of the vowels such as in
Figure 1. Thus, speakers apparently modified their speech to
avoid inventories of vowels that would otherwise be difficult
to discriminate.
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Figure 5: Comparison of typical vowel formant values and those
produced by speakers in the TIMIT database. Back vowels /u/ and
/o/ differ greatly from their expected positions.

Experiment 3
We have suggested that theback4inventory used in the pre-
vious experiment contained /u/’s which did not overlap with
neighboring /o/’s and this increased the discriminability of
the two. This suggests a simple prediction: if the two vowels
were moved back to their canonical positions, the variabil-
ity of the two should create sufficient overlap to significantly
impede learning and generalization. To test this, simple feed-



F2

F1

i

a

e o

u

Figure 6: Schematization of the domains of typical back vowels and
their American English counterparts (darker ellipses). Overlap is
minimized by displacing /u/ to a greater extent than /o/.

forward networks were trained on synthetic vowels that al-
lowed us to control the exact formant and variance parameters
of each vowel type.

Method
A set of F1, F2 and F3 means for all five vowels [i e a o u]
was devised, based on cardinal vowel positions in Lind-
blom (1986). These formant values represented vowels’ usual
positions in languages. Each vowel’s standard deviation was
obtained from our own analyses of the TIMIT database, along
with data from Beckman et al.(1995). Thus, back vowels had
a F1 standard deviation that was greater than the correspond-
ing front vowels, due to the effect of poor control over vowel
height. The result was a set of vowels with similarly spaced
/i/-/e/ and /u/-/o/, but with greater variance in the back vowels.

Using these parameters, 35 instances of each vowel type
were generated. Actual synthesis was performed using a
parallel-formant speech synthesizer to create 180 ms. wave-
forms for each vowel. These were then transformed into a
set of 2040 spectral coefficients using a Fourier Transform
algorithm, and then rescaled to the 0-1 range, and used as the
input vectors for our networks.

The synthetic stimuli constituted much cleaner instances
of vowels than in previous experiments: length and loudness
were all identical, formant frequencies and bandwidths were
constant for the entire length of the vowel, and there were
no coarticulatory effects at the vowels’ onsets and releases.
Learning was thus expected to be easier overall; for this rea-
son, a hidden layer of 15 units was used for each network.
Each network was trained to associate each set of input vec-
tors to a localist representation of the vowel it corresponded
to. Training proceeded as in the previous experiments: a ran-
domly selected input vector was presented to the network at
each iteration, and error was computed using the backpropa-
gation algorithm. Three networks of both types were trained,
for a total of six networks.

Results
Networks were trained to 100K trials. The criterion of 95%
correct on training items was again used to assess overall per-
formance. Each network was tested at intervals of 10K trials.

The front5 network reached criterion by 70K trials, whereas
theback5network needed 100K trials to reach criterion.

To further assess each network’s performance, five novel
vowels of each type in the training sets were generated. Each
was presented to the network every 10K training trials, and
the resulting SSE value was recorded. Figure 7 shows mean
error rates and standard errors for each vowel in the training
set over the course of training. These results show slower
learning of theback5set, compared tofront5 set, though in
both cases the networks achieved near perfect training by
100K training trials.

0 2 4 6 8 10

Training Trials (x 10,000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
S

S
E

back4 (less attested)
front4 (attested)

Figure 7: Mean SSE for the syntheticfront4 andback4vowel sets,
over time. Data are averaged across 3 different network runs for
each type.

Discussion
Results of this experiment support the hypothesis that vari-
ability in vowels affects learning and generalization in vowel
inventories. As predicted, the performance of thefront4 net-
works was superior to theback4networks, in spite of the
fact that the relative dispersion of the two inventories was the
same. Because of the imprecision with which they tend to
be produced, back vowels formed weak and overlapping rep-
resentations in theback4networks. This was less likely to
occur in front vowels, since the distinctiveness of /i/ and /e/
can be better maintained by the speaker. This would explain
why it is that fewer of the world’s 4-vowel languages take the
form of [i a o u] than [i e a u].

Conclusion
The simulations we have described examined how factors re-
lated to the distinctiveness of vowels could be related to facts
about about the distributions of vowels in languages. The
first experiment showed that greater dispersion of vowels in
a set promoted better learning and generalization, compared
to less dispersed inventories of the same size. These results
are consistent with the observation that, other factors being
equal, contrasts that are more dispersed will be easier for peo-
ple to discriminate and produce. Given the architecture that
we used, the unattested vowel sets were actually unlearnable;



the networks dropped one vowel from each set and also per-
formed worse on the remaining vowels. The second exper-
iment examined another source of constraint, variability in
how vowels are realized in speech. Two inventories could
contain vowels whose canonical forms are equally distant
from each other but overlap in differing degrees because of
production variability. We hypothesized that such variability
was related to differences in the frequencies of attested vowel
sets. This predicted that there would be differences between
two attested vowel sets in ease of learning and generaliza-
tion, and while the effects in Experiment 2 were in the right
direction, they were rather small. We then determined that
the vowels in the American English corpus that we used ex-
hibit a compensatory shift in the back vowels. Speakers in
the TIMIT database have minimized the overlap between the
two vowels’ domains by fronting /u/ to a greater degree than
/o/. This compensation is consistent with the view that vowel
inventories are determined by factors concerning perception
and production. Apparently, speakers will adapt their speech
in directions that avoid learnability problems. Experiment 3
showed that when back vowels were moved to their canonical
positions, the anticipated difference in training [i e a u] and
[i a o u] inventories was obtained.

These results must be treated cautiously because we have
not explored the range of architectural factors that influence
performance, including the number of hidden units. Although
such factors are likely to affect learnability, our assumption is
that the observed performance differences between vowel sets
will be preserved over a broad range of conditions; however,
this issue needs to be assessed in future work.

We also have not examined all of the factors that influence
the composition and stability of vowel inventories; there are
likely many other sources of discriminability that help deter-
mine vowel inventory patterns. For example, some languages
use length to contrast acoustically similar vowels. Diphthon-
gization also enhances the contrastiveness of a vowel, by fus-
ing it with another vowel sound. Finally, the proximity of
any two formants in a vowel can affect its distinctiveness,
which explains why the vowel /y/ is more common that its
back counterpart /W/ (Boë, Schwartz, & Val´ee 1994).

The success of the simulations presented here suggest that
this broad range of factors influencing the distributions of
vowels in languages may be explainable in terms of con-
straints on perception, production and learning. The vowel
inventories that exist are those that are learnable given these
constraints. Further, the relative frequencies of different in-
ventories reflect the graded effects of these variables. Ex-
plaining vowel inventories in this way contrasts with the ap-
proach taken within generative phonology, which treats these
phenomena as the result of innate feature hierarchies that are
too complex to be learned. The fact that some combinations
of vowels do not occur is then attributed to innate constraints
on phonological systems. Our view obviously differs, inso-
far as it attributes these effects to facts about how vowels
are realized in speech, something that such competence the-

ories exclude from consideration. More recently, Optimality
Theory (OT) has attempted to account for similar typologi-
cal data in terms of constraint ranking (Prince & Smolensky
1997). OT is a powerful approach, and it should thus be pos-
sible to explain our findings in its formalism. But unlike OT,
the research presented here represents a principled account
of where the relevant constraints come from, and how their
relative weightings are discovered.
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