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ABSTRACT

A novel connectionist model of speech perception is
presented which accounts for data regarding the per-
ception of foreign speech sounds by native speakers of
English. The model was trained on a large corpus of
English CV syllables, and then tested on isiZulu stim-
uli. Results were similar to those obtained in a study
with human participants by Best et al. [1]. Impor-
tantly, the match between the model’s performance
and the human data did not depend on the inclusion
of articulatory information in the model.

INTRODUCTION

Developmental studies of speech perception indicate
that the ability to discriminate some unfamiliar con-
trasts begins to decline around the first year of life [2].
In the absence of experience with such contrasts, per-
formance remains poor into adulthood. For instance,
native Japanese speakers encouter well-documented
difficulties learning the English /1/ - /1/ distinction and
these individuals do not typically achieve nativelike
performance even with extensive training (e.g., [3]).
For their part, native English speakers have difficulty
with a number of other contrasts, including the Hindi
dental-retroflex place contrast [4].

Not all foreign contrasts are equally difficult to per-
ceive, however. The ease (or dificulty) of perceiving a
novel contrast depends both on the degree of acoustic
similarity between sounds and the relationship of the
second-language (L2) sounds to the phonetic inventory
of the listener’s native language (L1). A number of
theoretical models have been proposed to explain the
complex interactions that arise between these two fac-
tors. Here, we describe a novel connectionist model of
speech perception that complements and extends ex-
isting work by Flege [5] and Best et al. [1]. The model
provides a mechanistic account of the perception of
foreign speech sounds, as well as a means of examining
long-standing questions about the role of various kinds
of representations in speech perception.

In Flege’s Speech Learning Model (SLM), L2 speech

sounds are perceived relative to L1 prototypes. Thus,
the SLM predicts that foreign language (L2) speech
sounds should be easiest to acquire if they differ pho-
netically from native language (L1) speech sounds —
and from other foreign speech sounds. While the SLM
accomodates a wide range of phenomena, it does not
make explicit claims about the mechanism by which
sounds are assimilated to existing categories. In prac-
tice, predictions in the SLM are derived from con-
trastive analysis of phonological inventories and em-
pirically determined assimilation patterns [6].

Best’s Perceptual Assimilation Model (PAM), like the
SLM, proposes that assimilation of L2 sounds to the
L1 phonetic inventory plays a central role in cross-
linguistic speech perception. Unlike SLM, PAM as-
sumes that speech perception is accomplished by direct
perception of gestural information. In accordance with
this, the model’s predictions of patterns of assimilation
and discrimination are generated through contrastive
analysis of the gestures involved.

In the single category (SC) assimilation pattern, two
foreign sounds are mapped onto the same native phone,
yielding very poor discrimination performance. For ex-
ample, the distinction between the isiZulu implosive
(/6/) and pulmonic biliabial stop (/b/) was perceived
with only about 66% accuracy by native speakers of
American English.

Category goodness (CG) distinctions are just that;
while both sounds map onto the same category, they
do not do so equally well. An example of this is the
contrast between the velar ejective stop consonant and
the pulmonic voiceless aspirated velar stop (/k’/-/k"/).
Because the former has a much more forceful burst that
than either the isiZulu or English /k"/, it is judged as
a significantly worse exemplar of /k"/. Discrimination
for this contrast was therefore predicted to be good,
but not perfect. Best et al. found approximately 90%
discrimination for these stimuli.

Finally, two category (TC) distinctions involve two
sounds that assimilate to different L1 categories.
IsiZulu voiced and voiceless lateral fricatives (// - /B/)
follow this pattern, with the voiced sound assimilat-
ing predominantly to /1/, and the voiceless to /f/. As



might be expected from an /1/-/[/ discrimination task,
performance was close to perfect (around 95%).

Thus, success in the discrimination task was related to
the manner in which an L2 contrast assimilated to L1
categories, consistent with most, if not all theories of
L2 speech perception (including PAM), and with the
notion of “acquired similarity” central to the earliest
theories of categorical perception in speech (e.g., that
of Liberman and colleagues [7]). What remains to be
determined, however, is whether these results emerge
as a specific consequence of features that differenti-
ate PAM from other theories, such as its commitment
to direct realism. Instead, this pattern of data might
simply emerge from relations between the statistical
structure of the English and isiZulu phonetic inven-
tory, defined on strictly acoustic/auditory dimensions.

As a test of this alternative, we present a connectionist
model of speech perception trained on English speech
sounds and tested on stimuli similar to those employed
by Best et al. This model has two advantages over ex-
isting theories. First, because it is computationally ex-
plicit, it provides a mechanistic explanation of the phe-
nomena it simulates, and provides a straightforward
way of making quantitative predictions. Second, it de-
pends on very general assumptions about statistical
learning, rather than particular assumptions about the
kinds of internal representations that support speech
perception!.

METHODS

Stimuli

2600 English CV syllables were recorded by eight
male native English speakers and one male bilingual
Zulu/English speaker. The consonant set included all
English stops, fricatives and liquids, as well as the nasal
/m/. Each consonant was produced in the vowel con-
texts /a/, /ei/, /i/ /o/, and /u/. Each syllable was
digitized at 20 kHz and converted into a cochleagram
with a 15ms analysis length and a time step of 10ms us-
ing the Praat program (P. Boersma and D. Weenink).
Distance between filters was 2 Bark.

Stimuli were then over- and undersampled at rates of
21 and 19 kHz, approximately equivalent to a +/- 5%
change in register. This effectively tripled the number
of speakers to which the model was exposed, and dis-
couraged overlearning of the training set. Two hundred
and nineteen of these syllables were withheld from the
training set for testing. In addition, 102 isiZulu stimuli
were recorded and cochleagrams made with the same
parameters. These stimuli were used exclusively for
testing.

IWork along the lines presented here may also provide a com-
pelling account of speech perception in general. However, the
current claim applies specifically to L2 perception.

Model architecture and training procedure
The network consisted of 5 layers of units. The first
hidden layer was connected recurrently to a second
layer; this improves the model’s ability to track tempo-
ral dependiencies in the input. Output units were con-
nected to themselves and each other, allowing for the
development of attractor structure. At the beginning
of training, each weight in the network was assigned a
random value between -0.1 and 0.1. The integration
constant was set at 0.3, and a learning rate of 0.001
was used.

The model was trained using the continuous recurrent
backpropagation algorithm [8, 9]. The model was run
six times with different random weights and order of
stimulus presentation on each run. Each stimulus pre-
sentation was divided into 50 time ‘“ticks” to capture
the time-varying aspects of speech spectra. This input
was coupled to two 21-bit acoustic feature vectors, one
each for the consonant and vowel. Beginning at time
tick 38, activation on the output layer was compared
to the target output for the current syllable. Error was
then applied to those units whose activation deviated
from the target, and changes on the weights to each
unit were made on the basis of the magnitude and di-
rection of the error. Training ceased when the sum
squared error (SSE) reached asymptote.

Testing procedures

Identification: Identification was simulated by
determining the consonant nearest to the literal out-
put of the model. For novel tokens of English phones,
percentages reported reflect the match of the model’s
output to the syllable produced by the speaker. For
the isiZulu items, raw percentage of identifications are
reported for the modal responses.

Discrimination: Discrimination performance
was examined using an analogue of the AXB task?.
Ten stimuli from each of the categories under study
(/t/, /8/, /X[, /K*/, /6/, /b/, all from the same
speaker) were used. On each trial, a test stimulus (X)
was compared to two other stimuli (A and B), one of
which was an exemplar of the same phonetic category,
the other of which belonged to a different category.
Correct discrimination was scored if the model’s re-
sponse — as determined by computing values on hid-
den units at a time tick corresponding to the end of
the consonant — indicated that the test stimulus was
more similar to the stimulus taken from the same cat-
egory. The proportion of correct responses out of 120
trials run for each contrast on each run of the model is

2As tasks such as AXB imply both perceptual discrimina-
tion and higher-level psychological processes such as decision-
making and working memory, it is not immediately clear how
these should be simulated in the model. A Euclidean distance
metric was chosen over other potential methods because it makes
the fewest assumptions about the nature of these latter pro-
cesses.



Table 1: Identification and Discrimination Scores for Zulu

Contrast
Identification
/b/- /8 K- &[] [B/- [}/
/b/ 1 1 - - - _
Jkb/ - - .88 .83 - -
55/ - - - - 8 -
I/ - - - - - 78
Discrimination
.75 .82 .95

Note: Non-modal responses included /t"/ for /k'/ (.11), /t" for /k’/
(17), /2] for /B/ (.17), and /6] for /3] (.22).

reported as mean accuracy.

RESULTS

English Speech Sounds

In order to establish that the model had learned to
recognize stimuli in its “L1,” we tested its performance
on both trained and novel English stimuli. Perfor-
mance on the training set was near perfect (98.4%),
and generalization was quite good (94.8% correct). In-
terestingly, errors consisted mainly of place confusions
among stops and anterior fricatives, similar to human
performance [10].

Zulu Speech Sounds

Identification: Patterns of assimilation are
given in Table 1. Zulu stimuli were always assimilated
to English phones, although the consistency of assimi-
lation patterns varied among contrasts (as with human
English speakers [1]).

Discrimination: Discrimination performance
varied with stimulus type, F(2,10) = 17.5,p < .001.
As in the human data, discrimination was best for the
TC contrast (/ka-/%a), somewhat poorer for the CG
contrast (/ga/ - /k’a/) and poorest for the SC con-

Figure 1: MDS plots of hidden unit activations for two con-
trasts tested. Vertical lines indicate the origin of
the most explanatory dimension
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trast (/ba/ - /ba/). Multidimensional scaling (MDS)
plots in Figure 1 provide insight into the internal repre-
sentations that underlie this discrimination behavior.
Note that the lateral fricatives are clearly separable
along the dimension that explains the most variance
in the dissimilarity matrix, whereas the bilabials form
overlapping distributions.

DISCUSSION

A multi-layer connectionist model trained with contin-
uous recurrent backpropagation readily learns to iden-
tify a wide range of acoustic stimuli as different con-
sonants and vowels. When the model misidentifies L1
stimuli, it does so in a manner that is largely consistent
with the performance of human listeners. Furthermore,
the model replicates important findings from Best et
al. regarding the relationship between assimilation and
discriminability of L2 speech sounds. The pattern of
data suggests that the model has learned to distinguish
speech sounds in a manner that reflects some impor-
tant aspects of human speech perception.

Performance on L2 speech sounds is particularly in-
formative. They are perceived as exemplars of familiar
(L1) categories. In the course of learning to distinguish
English speech sounds, the model learns that certain
aspects of the input are highly informative (e.g., VOT
within a specific range), but that others are not (e.g.,
prevoicing, voice quality changes). Thus, when a novel
contrast relies on properties of the stimuli which are
distinctive in the L1, discrimination is very good. Con-
versely, when a contrast depends on an aspect of the
stimulus the model has learned to ignore, it typically
fails to distinguish between the sounds. This behavior
is the result of the general ability of associative mem-
ory to extract the reliable covariance in a given input
domain — in this case, the phonetic inventory of En-
glish.

Critically, the model’s performance does not depend
on knowledge of the articulatory gestures that gave
rise to the acoustic waveforms. This suggests that the
results observed by Best et al. may lend themselves
to an explanation in purely acoustic terms. For ex-
ample, the acoustic consequences of laryngeal lowering
that provide the strongest articulatory cue to the /6/
- /b/ contrast are very subtle, functionally reducing
this contrast to a distinction between a pre-voiced and
a 0 VOT stop. Because both of these are allophones of
/b/ in English, the model learns to ignore this differ-
ence and does not reliably distinguish between these
two sounds. Interestingly, the larynx raising and clos-
ing gesture in /k’/ is highly audible because (in tandem
with a velar closure and release) it generates a very dis-
tinctive “popping” sound followed by silence, on which
basis these stimuli can be distinguished from /k!/. Fi-
nally, the acoustic differences between /B/ and // are



both salient and readily assimilable for native English
speakers.

Our approach differs from PAM in this respect: On our
view, listeners assimilate new sounds as a function of
the learned L1 covariance structure defined in the au-
ditory domain; on Best’s view, they assimilate in terms
of directly perceived speech gestures. The model pre-
sented here at least suggests that the direct perception
of gestures is not critical to an account of the relation-
ship between assimilation and discrimination observed
by Best et al.

CONCLUSIONS

Work with similar models in a very different domain
(i.e., reading, [11]) has revealed interesting interac-
tions between generalization and age-limited learning
effects. When knowledge of early-learned items gen-
eralizes to novel stimuli (as in alphabetic reading), ef-
fects of age-limited learning are not observed. When
the training corpus of the model was manipulated so
that less generalization from early to later items was
possible, stronger age-limited learning effects were ob-
served.

Perception of L2 speech sounds offers an opportunity
to study a similar interaction between generalization
and plasticity more naturalistically. Phonetic inven-
tories overlap among languages. For example, whereas
isiZulu contains many consonants which are unfamiliar
to native speakers of English, it also contains some con-
trasts (for example, /b/ - /p®/) which are essentially
identical to the same distinctions in English. Thus, in
learning to perceive isiZulu, an English speaker would
get at least part of the inventory “for free.” A good
deal of empirical work — much of it motivated by the
SLM (see review in [5]) — suggests that acquisition of
L2 speech sounds depends in large part on how these
speech sounds are assimilated to existing L1 phones.
The current model can be used to generate specific
predictions about which speech sounds will be most
susceptible to such age-limited learning effects.

We currently are adapting the model to address issues
in both developmental speech perception and lexical
acquisition. The architecture presented here provides
an ideal environment for testing questions about the
type of operations that subserve these processes, as
well as the time course of their emergence. It is hoped
that work in this direction will provide a unified and
parsimonious account of early linguistic development.
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