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On the Nature and Scope of Featural Representations of Word Meaning 
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Behavioral experiments and a connectionist model were used to explore the use of featural 
representations in the computation of word meaning. The research focused on the role of 
correlations among features, and differences between speeded and untimed tasks with respect 
to the use of featural information. The results indicate that featural representations are used 
in the initial computation of word meaning (as in an attractor network), patterns of feature 
correlations differ between artifacts and living things, and the degree to which features are 
intercorrelated plays an important role in the organization of semantic memory. The studies 
also suggest that it may be possible to predict semantic priming effects from independently 
motivated featural theories of semantic relatedness. Implications for related behavioral 
phenomena such as the semantic impairments associated with Alzheimer's disease (AD) are 
discussed. 

Many theories have assumed that word meaning is rep- 
resented, at least in part, in terms of featural primitives (see, 
e.g., Collins & Quillian, 1969; Minsky, 1975; Norman & 
Rumelhart, 1975; Shallice, 1988; and Smith & Medin, 1981, 
for overviews). Several properties of such representations 
have been explored in detail and have proven to have 
explanatory value. For example, a number of studies have 
shown that different features are activated depending on the 
context in which the word occurs (Barsalou, 1982), suggest- 
ing that word meanings are not like fixed dictionary entries. 
The purpose of the present research was to examine the role 
of featural representations in the processing of word mean- 
ing. Three general issues were addressed: the relevance of 
featural representations to different types of semantic tasks; 
the nature of featural representations, focusing on the way in 
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which feature correlations might be learned and what their 
subsequent role in word recognition might be; and the 
organization of semantic memory, with particular emphasis 
on defining semantic relatedness and specifying the source 
of automatic semantic priming. 

T H E  SCOPE OF F E A T U R A L  

R E P R E S E N T A T I O N S  

The validity of a featural approach to word meaning has 
been widely questioned in recent years. Much contemporary 
research on concepts has focused on higher level knowl- 
edge, such as people's naive theories of biology (for dis- 
cussion, see Jones & Smith, 1993, and associated commen- 
taries). Knowledge-based theories (Medin, 1989; Murphy & 
Medin, 1985) attempt to account for phenomena such as the 
development of conceptual structures (Keil, 1989) and peo- 
ple's capacity to reason about category membership (Rips, 
1989). In this approach, higher level knowledge is assumed 
to be central to concepts and is positioned as an alternative 
to feature-based accounts. However, the two views seem to 
address different phenomena: Theories seem irrelevant to 
recognizing and reacting appropriately to everyday objects, 
whereas features cannot account for people's performance 
in tasks such as Rips' that involve explicit reasoning based 
on conceptual representations. The present research exam- 
ined the hypothesis that whereas featural representations are 
central to the initial computation of word meaning, they are 
less relevant to the kinds of tasks that typically lend support 
to knowledge-based theories. 

Jones and Smith (1993) have noted that the tasks used in 
studies of conceptual representation may yield data about 
numerous aspects of human knowledge and processing be- 
cause they vary greatly in terms of the information required 
to perform them. The tasks that have been used to assess 
people's concepts can be viewed as spanning a continuum 
that extends from high-level, untimed reasoning tasks to 
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speeded tasks that rely primarily on what is sometimes 
termed automatic processing (Posner & Snyder, 1975). 
Tasks situated toward the high-level end are those that 
demand considerable reasoning, for example, assessing the 
relative probabilities that two patients have a certain disease 
(Medin, Altom, Edelson, & Freko, 1982); assessing whether 
an object that was a horse but was given surgery to look like 
a zebra, and now acts like a zebra but still gives birth to 
horse babies is really a horse or a zebra (Keil, 1989); or 
assessing whether a circular object that is two inches in 
diameter is a pizza or a quarter, in the absence of any other 
information (Rips, 1989). Performing these types of judg- 
ments requires integrating a number of information sources, 
such as the perceptual features of objects, knowledge of 
one's language, general knowledge of biology, and knowl- 
edge of the pragmatics of answering questions in psychol- 
ogy experiments. Toward the low-level end are speeded 
object naming, feature verification, same-different judg- 
ments, and semantic decisions (e.g., "is it a concrete ob- 
ject?"). Performance on these tasks may depend largely on 
featural representations, with minimal influence from 
higher level reasoning processes. Tasks that fall somewhere 
between these extremes include untimed similarity, concept 
typicality, and feature typicality judgments. Although these 
tasks involve explicit comparisons among multiple aspects 
of stimuli, they require less extensive reasoning than those 
typically employed by researchers studying knowledge- 
based theories. 

Studies that have examined the informational bases of 
tasks such as analogical reasoning, similarity judgments, 
and speeded same-different judgments provide support for 
this view (Goldstone, 1992; Markrnan & Gentner, 1993; 
Medin, Goldstone, & Gentner, 1993). For example, Mark- 
man and Gentner used the structure-mapping theory of 
analogy (Gentner, 1983) to investigate the bases of similar- 
ity judgments. Their experiments suggest that making ex- 
plicit, untimed judgments of the similarity of two scenes 
involves f'mding a globally consistent mapping between 
them and then assessing feature overlap with respect to the 
global alignment. In a related study, Goldstone used a 
deadline procedure to investigate the factors that influence 
fast and slow same-different judgments. When subjects 
were required to respond in one second or less, same- 
different judgments were dominated by local, direct, match- 
ing of individual features. In contrast, when they were 
allowed 2.68 s to respond, they used the time to align the 
stimuli before assessing feature overlap, as in the Markman 
and Gentner studies. 

We extended this line of research by using two pairs of 
yoked tasks. 2 All four tasks used words as stimuli and made 
use of feature norms collected in Experiment 1. Experiment 
2 contrasted a short stimulus onset asynchrony (SOA) se- 
mantic priming task (2A) with an untimed similarity rating 
task (2B). Experiment 3 contrasted speeded feature verifi- 
cation (3A) with untimed feature typicality rating (3B). 
Each pair of tasks was assumed to differ in terms of degree 
of cognitive penetrability (Pylyshyn, 1984), and it was 
hypothesized that featural measures would better predict 

subjects' performance on the speeded, less cognitively pen- 
etrable tasks. 

TH E N A T U R E  OF F E A T U R A L  
REPRESENTATIONS OF W O R D  M E A N I N G  

In order to make detailed predictions regarding the influ- 
ence of featural representations on the computation of word 
meaning, a specific theoretical framework was required. 
Connectionist models present a relevant framework in that 
all models that use distributed representations incorporate 
featural representations of some sort. Because of this, con- 
nectionist models have previously been used to investigate 
the acquisition, representation, and use of featural seman- 
tics. For example, research by Hinton (1981) used featural 
representations to explore word meaning and the structure 
of categories. Hinton and Shallice (1991) and Plaut and 
Shallice (1993) used a similar approach to explore deep 
dyslexia, a behavioral impairment that is marked by a num- 
ber of symptoms, the most salient of which is a tendency to 
make semantic errors in reading aloud (e.g., reading sym- 
phony as orchestra). Such models are trained to compute a 
featural representation of a word or picture using a standard 
learning algorithm such as backpropagation. Exposure to a 
large set of stimulus patterns results in the encoding of 
information about the distribution of features across con- 
cepts. For example, a model might learn not only that a tiger 
(has fur) but also that (has fur) is a feature of many other 
animals and that animals that (have fur) also tend to (have 
claws) and (have a tail). 3 This property of connectionist 
networks highlights an important question that is a focus of 
this article: Do people learn feature correlations, and if so, 
what role does this knowledge play in computing word 
meaning? 

Insight into the role of correlated features in word recog- 
nition can be gained by considering the nature of the lexical 
mappings among spelling, sound, and meaning. The map- 
ping from English spelling to sound can be characterized as 
a system of soft regularities in that words with similar 
spelling tend to have similar pronunciation (Seidenberg & 
McClelland, 1989). A major reason for the success of the 
Seidenberg and McClelland model of word naming is that 
the backpropagation learning algorithm is particularly well- 
suited to encoding such quasi-regular mappings. In contrast 
to the spelling-sound mapping, a classic computational 

1 This type of classification of tasks has been fruitfully used in 
a number of other areas of cognitive psychology. For example, 
Roediger and McDermott (1993) classified tests of implicit mem- 
ory along a perceptual-conceptual dimension. Their scheme has 
been viewed as extremely useful to researchers interested in inte- 
grating results from different yet related methodologies (e.g., 
Moscovitch, Goshen-Gottstein, & Vriezen, 1994). 

2 In actual fact, Experiments 2 and 3 predated these studies; see 
McRae (1991). 

3 When referring to entities in the world, lowercase normal font 
is used. Concept names are printed in italics, as are examples of 
experimental stimuli. Names of features are printed in angled 
brackets as in (has fur). 
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problem in lexical semantics is that the mapping from word 
form (spelling or sound) to meaning is unsystematic in 
many languages, particularly for monomorphemic words. 
Thus, similar word forms (e.g., hat, cat, mat, and that) must 
be mapped onto dissimilar semantic patterns. This problem 
can also be expressed in terms of the lack of reliability of 
subword mappings: Letters do not map onto specific com- 
ponents of meaning. 

Some researchers such as Forster (1994) have taken these 
facts to indicate that connectionist systems are ill-suited for 
computing word meaning. This view is mistaken for several 
reasons. First, it overstates the limitations on the capacity of 
connectionist networks to learn arbitrary mappings. Feed- 
forward networks, which were Forster's focus, can learn 
arbitrary mappings if provided with sufficient numbers of 
hidden units. Networks that are allowed to memorize a set 
of patterns sacrifice the capacity to generalize, but this is 
irrelevant when the mapping between domains is arbitrary. 
Second, it overstates the arbitrariness of the relationship 
between form and meaning. Although the mapping between 
codes (e.g., phonology ~ semantics) is largely arbitrary (for 
monomorphemic words), the structure that exists within 
each type of representation is also relevant. Both phonology 
and semantics are highly constrained domains in which only 
some combinations of features are valid and features are 
correlated with one another to different degrees. In fact, the 
structured nature of semantics played a central role in the 
Hinton and Shallice (1991) and Plant and Shallice (1993) 
accounts of deep dyslexia. 

The model presented below belongs to a class of connec- 
tionist architectures that use a correlational learning algo- 
rithm to encode covariations among features that then form 
the basis for processing; these are known as attractor net- 
works. From this class, we chose a Hopfield network (1982, 
1984). Unlike the strictly feedforward backpropagation net- 
works that are more common in cognitive psychology, the 
processing of a Hopfield network is iterative and quite 
transparent. Thus, when an input pattern is presented, acti- 
vation over a Hopfield net's representational units changes 
over time until a learned pattern is computed (where a 
learned pattern is a basic level concept in our case). That is, 
over a number of iterations (or processing cycles), the 
network settles into (or converges on) a stable state that 
represents one of its learned patterns. For any individual 
stable state, there exists a set of similar representational 
states that collectively constitutes its basin of attraction. A 
basin of attraction can be visualized in three dimensions as 
an irregularly shaped sink with a learned pattern located at 
its lowest point (i.e., the drain hole). When a Hopfield 
network gets into a basin of attraction and no input inter- 
venes, it settles into the corresponding stable state. 

How does this work in the case of computing a word's 
meaning from its spelling or sound? Because the mapping 
from word form to meaning is largely arbitrary, the first 
processing cycle produces a pattern over the word-meaning 
units that falls within the word's basin of attraction, but only 
roughly approximates the correct meaning. Then, assuming 
that each unit in the network represents a semantic feature 
and a correlational learning algorithm like the Hopfield rule 

(1982, 1984) has been used, knowledge of the correlations 
among semantic features transforms the pattern over a num- 
ber of processing cycles until it corresponds to the word's 
meaning. Thus, when each unit corresponds to a feature, 
knowledge of feature correlations is a major influence in 
determining the number of iterations required for the net- 
work to converge. 

This understanding of attractor network dynamics moti- 
vated a major prediction tested in the experiments presented 
below, that correlated features influence the speed with 
which word meaning is computed. We also assessed the 
further prediction that such effects would be more apparent 
in speeded tasks (Experiments 2A and 3A) than in slower 
untimed tasks (Experiments 2B and 3B). Finally, we imple- 
mented a Hopfield network in order to assess the validity of 
these predictions about its behavior. Because of the com- 
plexity of interacting, nonlinear systems, it is necessary to 
assess an implemented model rather than rely on conjec- 
tures about its performance. This was particularly important 
in the present case because we were relying on the model to 
encode knowledge of correlated features in the weights (that 
is, as part of the processing mechanism), rather than adding 
specific representational units for this purpose (see Gluck, 
Bower, & Hee, 1989). 

The modeling described next also improved on previous 
efforts in that it was not based on the type of ad hoc featural 
representations that have been employed in the work on 
word meaning. Instead, our featural representations were 
empirically motivated, being based on the normative data 
described in Experiment 1. One benefit of this approach was 
that it allowed us to discover that the distributional patterns 
of correlated features differed across artifacts and living 
things, a pattern that was predicted by Gelman (1988) and 
Keil (1989), who stressed that living things cohere around 
clusters of correlated features, but artifacts do not. Based on 
these analyses, Experiment 2 tested for a dissociation be- 
tween living things and artifacts in terms of the influence of 
correlated features on automatic priming effects. In addi- 
tion, the simulations allowed us to investigate whether the 
network would naturally distinguish between living things 
and artifacts on this basis, a fact that has been recently used 
to model category-specific deficits in Alzheimer's dementia 
(Devlin, Gonnerman, Andersen, & Seidenberg, 1996). 

C O R R E L A T E D  FEATURES 

Before proceeding, it is important to clarify what we 
mean by correlated features in this article because the term 
has been used imprecisely in the concepts literature. In the 
present research, two features were correlated if they tended 
to appear in the same basic-level concepts (see Experiment 
1 for the method used to compute these correlations). 4 For 
example, according to the correlational analyses on the 
norms described below, the features (has fur) and (has 

4 Some of the concepts may not be at the basic level because 
they included 19 birds and bird is often considered to be basic 
level. A number of analyses suggested that excluding the birds did 
not alter the results. 
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whiskers) are significantly correlated because living things 
like tigers, dogs, and lions that have fur also tend to have 
whiskers. 

In contrast, in the artificial concepts literature, investiga- 
tions of correlated features have involved testing whether 
subjects can discriminate between categories on the basis of 
pairs of features rather than single features (e.g., Medin et 
al., 1982; Waldmann, Holyoak, & Fratianne, 1995; Watten- 
maker, 1991, 1993). The correlated features in those studies 
differ from the present work in both their form and purpose. 
Murphy and Wisniewski (1989) have pointed out that this 
literature has used correlated features to refer to what are 
actually conditional probabilities. Rather than measuring 
how features are correlated across the concepts that a person 
has learned, these experiments focus on a pair of features 
that pattern differently in two categories, thus providing a 
reliable cue for categorization. Consequently, features cor- 
related at + 1 in one category and - 1 in another may be key 
to distinguishing between categories in a study such as 
Medin et al., but would be measured as independent in our 
study. It might also be noted that it is unclear whether any 
pair of natural categories has this + 1, - 1 structure (e.g., in 
one category, all exemplars either (have wings) and (have a 
beak) or have neither, but in the other category, all exem- 
plars either (have wings) or (have a beak), but not both). 
Because of these key differences, the experiments and as- 
sociated models that deal with conflgural cues were not 
emphasized in the present article (e.g., Gluck et al., 1989; 
Hintzman, 1986; Kruschke, 1992; Medin & Schaffer, 1978). 

The term correlated features has most commonly been 
used to refer to the correlations that are hypothesized to 
form the basis of basic-level concepts (Rosch, 1978). For 
example, a person's concept of dog might consist of the set 
of features that are strongly correlated over the individual 
dogs that she has encountered. These correlations are 
learned by encoding the features that occur with objects that 
have been labeled dog. This knowledge was important in 
our work because subjects drew on it when listing features 
in the norms of Experiment 1. These norms then formed the 
foundation for computing feature correlations across 
concepts. 

Only one study has specifically investigated the link 
between correlated features across basic-level concepts and 
word meaning (Malt & Smith, 1984). Using representations 
based on feature norms, Malt and Smith computed the 
correlation between each feature pair and tested for an 
influence of correlated features on typicality judgments. 
They found that augmenting Rosch and Mervis' (1975) 
family resemblance measure with information about corre- 
lated features improved predictions of typicality ratings 
slightly, but nonsignificantly. This result is consistent with 
our view of task effects on the influence of correlated 
features; the effect of correlated features found by Malt and 
Smith was small because typicality rating is a relatively 
slow judgment task that is insensitive to the time course of 
computing word meaning and is potentially influenced by a 
number of information sources relevant to knowledge-based 
theories. 

SEMANTIC RELA TED N ES S  

The semantic-priming paradigm has played a major role 
in explorations into how semantic memory is organized and 
seems particularly suited to investigating whether correlated 
features influence the dynamics of computing word mean- 
ing. The semantic-priming task and the notion of semantic 
relatedness have been used in numerous studies of language 
processing in normals (see Neely, 1991, for a recent re- 
view), as well as studies of Alzheimer's dementia (e.g., 
Nebes, Brady, & Huff, 1989), amnesia (e.g., Shimamura & 
Squire, 1984), and implicit memory (e.g., Schacter, 1992). 
Semantic relatedness is typically contrasted with associative 
relatedness. Robust effects of associative relatedness have 
been found in a large number of experiments (Neely, 1991). 
The widely accepted view is that associative relatedness 
results from temporal contiguity in speech or text (McKoon 
& Ratcliff, 1992), or word co-occurrence within a proposi- 
tion (McNamara, 1992). 

Semantic relatedness is less clear for two reasons: There 
are conflicting empirical results, and the theoretical basis of 
semantic relatedness has not yet been established. A few 
studies have worked toward understanding the factors un- 
derlying semantic relatedness priming. Using simultaneous 
presentation of prime and target, Fischler (1977) found 
semantic priming with associative relatedness removed 
(when associative relatedness was operationalized by word- 
association norms). The source of Fischler's priming effect 
is questionable, however. In a lexical decision task, if the 
target is related to the prime, it must be a word (nonwords 
have no a priori semantic relations). Neely and Keefe (1989) 
have found evidence suggesting that priming effects in 
lexical decision are influenced by subjects retrospectively 
checking whether the prime and target are related. Thus, it 
is probable that Fischler's results were actually due to large 
retrospective effects that stemmed from the double lexical 
decision task. In a more recent study, Hodgson (1991) 
examined the bases of semantic priming at a range of short 
SOAs and found consistent effects with a lexical decision 
task. Unfortunately, he informed subjects of the related 
nature of some of the stimuli, a procedure that likely en- 
couraged strategic processing. Furthermore, Hodgson's ef- 
fects were small and homogeneous across the types of 
relationships that he studied (category coordinates, ant- 
onyms, synonyms, subordinate-superordinate pairs, con- 
ceptual associates, and phrasal associates), prompting him 
to claim that the effects were due to retrospection. 

Two recent studies, Shelton and Martin (1992, Experi- 
ment 4) and Moss, Ostrin, Tyler, and Marslen-Wilson 
(1995, Experiment 3), used single presentation to avoid 
strategic effects and found little or no priming. In fact, even 
prior to Moss et al.'s replication, Shelton and Martin 
claimed that "words that are very similar in meaning or 
sharing many features will not show automatic semantic 
priming if they are not also associated" (p. 1204). These 
failures are confusing because all existing theories of auto- 
matic priming predict the opposite result. In fact, these 
results prompted Shelton and Martin to conclude that auto- 
matic priming does not involve semantic representations at 
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all, but is due instead to associative relationships at the 
word-form level. However, Shelton and Martin chose their 
prime--target pairs based on their intuition that the concepts 
possessed sufficient featural overlap to produce a priming 
effect. (Moss et al. chose their items based on their intuition 
that the primes and targets were category coordinates.) This 
reliance on intuition is particularly problematic when con- 
clusions are based on null results, as was the case in their 
studies. In fact, Lurid, Burgess, and Atchley (1995) have 
commented on the apparent lack of relatedness between 
some of the pairs used by Shelton and Martin, such as 
duck-cow, knife-hammer, and magazine-record. Simi- 
larly, Moss et ai. also used several pairs that did not seem to 
possess a high degree of featural overlap, such as lake- 
mountain, pig-horse, and kite-balloon. Further support for 
this notion comes from a similarity-rating task conducted by 
McRae and Boisvert (1997) in which the prirne-target pairs 
of Experiment 2 of this article were rated as more similar 
(6.4, on a scale of 1 to 9) than those of Shelton and Martin 
(3.6) and Moss et al. (4.5). Thus, it appears that their null 
priming effects resulted from using prime-target pairs that 
were not sufficiently similar. In other words, their experi- 
ments were not a strong test of the prediction that semantic 
relatedness is due, at least in part, to featural similarity of 
word meaning. 5 

This study combined the feature norms of Experiment 1 
with the connectionist network in order to produce a repre- 
sentational and processing framework that enabled us to 
take a step toward defining semantic relatedness and to 
make detailed predictions. Specifically, semantic related- 
ness was measured as overlap between the prime and target 
in terms of individual features and correlated feature pairs. 
Featural similarity was then used to predict priming effects 
on an item-by-item basis. 

SUMMARY 

In summary, the reasoning processes that underlie tasks 
such as similarity judgments can involve many types of 
knowledge, only one of which is the featural representation 
made available when word meaning is computed. There- 
fore, variables that govern the representation of features in 
semantic memory might be expected to exert strong effects 
on tasks that are closely tied to word recognition, but weak 
effects on tasks that require considerable reasoning. This 
hypothesis was examined by conducting experiments in 
which the same stimuli were used with two types of tasks; 
one task required using featural information that rapidly 
becomes available in the course of recognizing words, 
whereas the other encouraged subjects to reason about the 
stimuli and permitted them to use nonfeatural types of 
knowledge in making their response. Within this frame- 
work, we tested the hypothesis that effects of correlated 
features should be evident only in the speeded tasks. Fur- 
thermore, the influence of featural representations on auto- 
matic semantic priming was tested in a more detailed way 
than in past research by using similarity in terms of indi- 
vidual and correlated features to account for item-by-item 
priming effects. Following the experiments, connectionist 

simulations are presented to illustrate how correlated fea- 
tures might be learned and how they might have influenced 
the tasks of Experiments 2 and 3. 

EXPERIMENT 1 

The purpose of Experiment 1 was to obtain data concern- 
ing subjects' knowledge of concepts by having them gen- 
erate features that were then used to construct representa- 
tions for a large set of words. This feature-listing method 
has been used in many previous studies (e.g., Barsalou, 
Olseth, & Wu, 1996; Rosch & Mervis, 1975; Smith, Osh- 
erson, Rips, & Keane, 1988). The resulting norms are as- 
sumed to provide valid information not because they yield a 
literal record of semantic representations but rather because 
such representations are systematically used by subjects 
when generating features. They therefore provide a window 
into important aspects of word meaning without necessarily 
being definitive (Medin, 1989). We further restricted the 
study to words that refer to concrete objects, specifically 19 
concepts from each of the following 10 categories: birds, 
mammals, fruit, vegetables, clothing, furniture, kitchen 
items, tools, vehicles, and weapons. Subjects were given a 
form containing 20 concept names (e.g., dog, desk) and 
were asked to list features for them (e.g., for dog: (barks), 
(has paws)). Space was provided for 10 features. Subjects 
were asked to take a couple of minutes per concept to list as 
many features as possible. 

Me~od 

Subjects 

Three hundred McGill University undergraduate and graduate 
students participated. Thirty subjects listed features for each con- 
cept. Their names were entered into a lottery for a cash prize, or, 
in some cases, they were paid $2. 

Materials 

Four living-thing categories (birds, mammals, fruits, and vege- 
tables) and six artifact categories (clothing, furniture, kitchen 
items, tools, vehicles, and weapons) were used (see Appendix A). 
Battig and Montague (1969) and Rosch (1975) served as guides for 
choosing exemplars that spanned a range of typicality within each 
category. There were nine exemplar pairs in each category; these 
served as the similar prime-target pairs in Experiment 2. In addi- 
tion, in order to facilitate the regression analyses of Experiment 2, 
the degree of similarity among those pairs varied somewhat (even 
though all were still part of the similar group). That is, based on 
intuition, some pairs were virtually synonymous (e.g., sofa- 
couch), whereas others were only moderately similar (carrot- 
celery). In addition, a prototypical exemplar was paired with the 
superordinate category name. 

5 The term "featural similarity" is used in this article to denote 
a measure of similarity computed over individual and correlated 
features. Wherever we intend to refer specifically to similarity in 
terms of one or the other type of featural representation, it is 
specified. 
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For the feature-listing task, there were 10 forms containing 20 
concept names, 2 from each category. No form contained both 
members of a prime-target pair, and each contained 1 superordi- 
nate category name. Subjects were asked to list features of the 
things to which the words referred. They were asked to list 
different types of features, such as "physical (perceptual) proper- 
ties (how it looks, sounds, smells, feels, and tastes); functional 
properties (what it is used for; where and when it is used); and 
encyclopedic facts (such as where it is from, or historical facts)." 
Three examples were provided. Thus, each subject listed features 
for 20 concepts, and 30 subjects listed features for each concept. 
Subjects were given as much time as needed; they took approxi- 
mately 40 min on average. 

Procedure 

Distribution and collection. Initially, 500 forms were distrib- 
uted in McGill University psychology classes, and 167 were re- 
turned (33%). In the second round, 200 forms were distributed, and 
80 were returned (40%). The final 53 forms were collected in the 
laboratory. 

Recording the features. For each concept, each feature was 
recorded with its production frequency, which is the number of 
subjects who listed the feature for that particular concept (between 
1 and 30). The initial stage in analyzing the norms was to ensure 
that synonymous features were recorded identically, both within 
and between concepts. For example, (used for transportation), 
(used for transport), (is used for transportation), (people use it for 
transportation), and (transportation) were coded as (used for trans- 
portation). It was equally important to ensure that features differ- 
ing in meaning were given unique labels. Responses were inter- 
preted conservatively, and the validity of all but the most obvious 
interpretations were verified with three naive colleagues. The 
following method was adopted for interpreting and organizing the 
feature set. Unless it was deemed important, quantifiers such as 
generally, usually, and can be were dropped. It was assumed that 
information carded by these quantifiers was inherent in production 
frequency data; that is, the number of subjects who included a 
feature in their lists should vary according to how often the 
instances have the feature. If a subject listed an adjective-noun 
feature (e.g., (has 4 wheels)), it was divided ((has wheels) and (has 
4 wheels)) under the assumption that the subject had provided 2 
bits of information. 6 Disjunctive features (e.g., (is green or red)) 
were also divided (into (is green) and (is red)). A number of key 
words and phrases were used to organize and code the features. 
These are displayed in italics, with an example completion in 
normal font: (a deer) (synonym), (bought~sold in hardware stores), 
(causes gas), (eaten for dessert), (eg--jeans), (found in kitchens), 
(grows underground), (has paws), (is brown), (isa tool), (lives in 
the forest), (made of metal), (part of a table setting), (requires a 
driver), (runs on gasoline), (used for carpentry), and (worn by 
women). 

Results and Discussion 

We first provide some general descriptive statistics re- 
garding the data set. Two contrasting representations of  
word meaning are then described, one based on individual 
features and the other on correlated feature pairs. These 
representations were the basis for the experiments and mod- 
eling described below. The final set of  analyses illustrate 

that correlated features tend to be more dense for living 
things than for artifacts. 

Before proceeding, note that the superordinate concepts 
(e.g., mamma/)  tended to be treated differently than the 
exemplar concepts (e.g., horse). Subjects commonly re- 
marked that they found it "hard" or "strange" to list features 
for the superordinates. In fact, subjects failed to provide 
coherent feature descriptions for eight of  them; kitchen and 
bird were exceptions presumably because kitchen is a place 
rather than a superordinate category name (kitchen items 
was actually the category), and bird is a basic-level concept 
for many adults (Rosch, Mervis, Gray, Johnson, & Boyes- 
Braem, 1976). Subjects'  inability to produce systematic 
features for superordinates can be illustrated by the percent- 
age of  responses consisting of  category exemplars (e.g., 
listing truck for vehicle). This type of response occurred 
frequently for mammal (17%), fruit (15%), vegetable (8%), 
clothing (14%),furniture (23%), tool (20%), vehicle (18%), 
and weapon (23%), but less so for bird (<1%)  and kitchen 
(<1%).  A similar result was reported in Rosch et al. Be- 
cause responses to the superordinates were highly variable 
and unsystematic, they were excluded from all further anal- 
yses except the analyses of  variance in Experiment 2A. 

There were a total of  54,685 responses; each subject listed 
an average of 9.6 features per concept. There were 9,618 
different features listed, so that each feature was listed by an 
average of 2.9 subjects. 2,963 features were listed for at 
least one concept by a minimum of  five subjects. The 
features were categorized by type using a slightly revised 
version of a taxonomy developed by Barsalou et al. (1996). 
The results are shown in Table 1. The number of  each type 
of feature broke down as follows: 1,640 aspects of  an entity; 
669 function features; 309 classifications; 294 features de- 
scribing information related to a situation in which the 
concept takes part; and 51 features describing people 's  
cognitions related to an exemplar of  the concept. Table 1 
presents the number of  artifact and living thing features in 
each of these categories, as well as example features. Al- 
though the patterns of  four of  the feature types were very 
similar, the number of  functional features was much higher 
for artifacts than for living things, as would be expected. 

Experiments 2 and 3 were designed to examine the role of  
individual and correlated features on people 's  performance 
on semantic tasks. Given that all feature-based theories of  
semantic memory assume that individual features are rep- 
resented, our analyses were designed to assess whether 
correlated features predicted performance above  and be- 

6 This procedure had potential implications for computing cor- 
relations between feature pairs (see the Correlated Features sec- 
tion below). However, the number of correlated feature pairs that 
resulted from this procedure was minimal (14 out of the 1190 
correlated feature pairs, 1%) and was approximately equal for 
artifacts (6, e.g., (has 4 wheels) and (has wheels)) and living things 
(8, e.g., (has a long tail) and (has a tail)). The main reason that so 
few correlations involved a complex feature and its simpler coun- 
terpart was that the correlational analyses involved only the 240 
features that were found in 3 or more concepts, and few of the 
complex features were listed for greater than 1 concept. 
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Table 1 
Breakdown of Responses in Experiment 1 Norms 

Feature frequency 

Living 
Category (example features) Artifacts things 

Aspects of a concrete entity 
(has a handle), (made of wood) 852 758 

Functional information 
(used for carpentry), 

(worn by women) 504 165 
Classification 

(isa fruit), (eg--jeans) 159 150 
Information related to a situation in which 

it takes part 
(found in bedrooms), 

(grows on trees) 156 138 
People's related cognitions 

(runs on gasoline), (is fun) 35 16 

yond the influence of individual features. In order to isolate 
the separate influences of the two types of information, two 
semantic representations were constructed, one based on 
individual features and the other on correlated feature pairs. 
In the individual features representation, information about 
correlated features was absent because a concept was rep- 
resented as a set of weighted features. In the correlated 
features representation, word meaning was represented in 
terms of correlated feature pairs, and information about 
individual features was not included as a distinct 
component. 

Individual Features Representation 

pairs sharing between 6.5% and 10% of their variance and 
another 466 pairs sharing between 10% and 20%. 

Concepts were represented as vectors across the resulting 
1,190 feature-pair units. A concept's value on a unit was 
determined by a three-part function. If the concept con- 
tained neither feature from the correlated pair, the unit was 
set to 0. If it possessed both features, the unit was set to the 
sum of the production frequencies. If it contained only one 
of the pair, then it violated the correlation, and the unit's 
value was set to the negated production frequency of the 
feature it possessed. Thus, if a concept possessed only one 
feature of a pair, the more often subjects had listed that 
feature for that concept, the slxonger the violation. For 
example, (flies) and (has feathers) shared 43% of their 
variance. According to the norms, a carrot neither (flies) 
nor (has feathers) (a value of 0); an eagle both (flies) and 
(has feathers) (13 + 16 = +29), and, although 22 subjects 
listed (has feathers) for ostrich, none claimed that it (flies) 
( -22) .  

One important property of the feature vectors was that 
they tended to be sparse. Because of this sparsity, the 
presence of one feature did not reliably predict the absence 
of another. This can be understood by considering the 
Pearson correlation coefficient, which is defined as EZxZy/ 
(n - 1). Because the feature vectors contained predomi- 
nantly zeros, mean production frequency was less than 0.4 
for all features, and less than 0.1 for 96% of them. Thus, a 
production frequency of 0 fell close to the mean, so that an 
absent feature contributed little to the correlational measure 
and the simultaneous presence of two features dominated it. 
As is outlined in Appendix B, the attractor network's learn- 
ing rule was similarly sensitive to pattern sparsity, and it 
seems reasonable that humans do not pay attention to absent 

Representations similar to those used by Rosch and 
Mervis (1975) and Tversky (1977) were constructed for the 
190 exemplar concepts. A feature was included as part of a 
concept's representation if at least 5 of the 30 subjects had 
listed it. The resulting 1,242 features were represented as 
vectors. Each feature vector contained 190 units, with the 
value for unitij (i = 1-190; j = 1-1,242) corresponding to 
the number of subjects who listed featurej for c o n c e p t  i. 
Each concept was represented across the feature vectors as 
a 1,242-unit pattern. A sparse representation resulted; be- 
cause no concept contained more than 27 features, each 
concept vector included a minimum of 1,215 zeros. 

Correlated Features Representation 

Concepts were also represented as patterns across 
correlated-feature pairs. Pearson product-moment correla- 
tion (r) was computed between pairs of features. To avoid 
spurious correlations, only the 240 features possessed by 
three or more concepts were included. There were 1,190 
feature pairs correlated at p < .01. Figure 1 is a histogram 
showing the frequency of correlated feature pairs as a func- 
tion of percentage of shared variance. Percentage of shared 
variance ranged from 6.5% to 99.7%. The distribution is 
positively skewed with 272 of the 1,190 correlated feature 

Figure 1. Frequency distribution of the 1,190 correlated feature 
pairs in terms of percentage of shared variance. 
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features either (i.e., because there are so many possible 
features in the world, the fact that a cat does not have a 
handle has little effect on learning). 

It is also worth noting that computing feature correlations 
across all 190 concepts contrasts with Malt and Smith 
(1984), who computed correlations within superordinate 
category. We chose not to follow their strategy because 
breaking the concepts into their superordinate categories 
leads to a number of ambiguities, such as whether tomato 
should be included in fruit or vegetable or whether dolphin 
and whale should be included in mammal. The situation is 
even more problematic for artifacts because there seems to 
be no independent set of principles by which they can be 
reliably subcategorized. Thus, the appropriate categories are 
not at all clear, and a great deal of overlap results when 
possible schemes are considered (e.g., a knife can be a tool 
a utensil a kitchen item, or a weapon). The uncertainty is 
illustrated by the fact that 214 superordinate category fea- 
tures were listed by at least 5 subjects for the 190 concepts, 
greater than one per concept. Because the psychologically 
relevant set of superordinate categories is unclear, we felt 
that the best strategy was to compute correlations across all 
concepts. 

Artifacts and Living Things 

According to Gelman (1988) and Keil (1989), living 
things and artifacts differ in the extent to which they entail 
correlated features. Living things tend to cohere around 
clusters of correlated features, whereas artifacts tend to 
cohere around the intended function of the creator (but see 
Malt & Johnson, 1992). The norms supported this notion in 
that 11% of living-thing feature pairs were significantly 
correlated (at p < .01), but only 6% of artifact pairs. In 
addition, living-thing concepts were more densely repre- 
sented across correlated feature pairs. To illustrate this, a 
two-way analysis of variance (ANOVA) was conducted in 
which the independent variables were type of concept (76 
living things versus 114 artifacts) and type of representation 
(individual versus correlated features). The number of pos- 
itive units in a concept's representation (i.e., the number of 
individual features or correlated feature pairs) was the de- 
pendent variable. A significant interaction effect showed 
that the pattern of individual and correlated features differed 
for the two types of concepts, F(1, 188) = 73.00, p < .001. 
Simple main-effect analyses indicated that the living things 
possessed far more correlated feature pairs (M = 33.4, 
SE = 2.1) than did the artifacts (M = 13.9, SE = 1.2), 
F(1,367) = 145.88, p < .001. However, no difference was 
found between the number of individual features possessed 
by living things (M = 16.5, SE = 0.4) and artifacts (M = 
15.0, SE = 0.3), F < 1. For each category, the mean number 
of individual features and correlated feature pairs were birds 
(15, 33), mammals (19, 38), fruits (16, 41), vegetables (15, 
21), clothing (16, 19), furniture (15, 8), kitchen items (15, 
12), tools (14, 7), vehicles (15, 14), and weapons (15, 23). 
These analyses beg the question of whether the influence of 
correlated features in a word-recognition experiment might 

differ between artifacts and living things, a question that is 
investigated in Experiment 2. 

In summary, individual and correlated feature represen- 
tations were constructed from the norms in order to isolate 
their influence on subjects' performance in Experiments 2 
and 3 and to guide the connectionist modeling. The corre- 
lations were computed across concepts such as dog, tiger, 
chair, and couch. 

E X P E R I M E N T  2 

The same stimuli were used in an automatic semantic 
priming and a semantic-similarity judgment task. These 
enabled us to contrast a speeded task not requiting an 
explicit comparison (short SOA priming) with an untimed 
explicit comparison task ("On a scale of 1 to 7, how similar 
are these 2 concepts?"). In each case, featural similarity was 
used to predict the dependent variable in regression analy- 
ses. Four hypotheses were tested. First, recent work has 
suggested that subjects use featural representations to per- 
form speeded same-different judgments, whereas they use 
several sources of information when making untimed sim- 
ilarity judgments (Goldstone, 1992; Markman & Gentner, 
1993; Medin et al., 1993). Thus, it was hypothesized thatthe 
featural representations would better predict performance 
on the priming task. Second, if correlated features are inte- 
gral to computing word meaning as an attractor network 
would suggest, then their influence should be apparent in 
the speeded task that is sensitive to the temporal dynamics 
of the computation. Third, if featural similarity of word 
meaning is an important aspect of semantic relatedness, then 
it should predict the magnitude of priming effects. Finally, 
because the distribution of correlated features differs for 
artifacts and living things, living thing priming effects 
might be more strongly influenced by correlated features. 

Experiment  2A 

Posner and Snyder (1975) proposed that when the SOA is 
short, semantic priming is automatic, whereas with more 
time, subjects use the prime to generate an expectancy set 
for the impending target. This hypothesis has since been 
elaborated, but the core ideas have been retained (e.g., 
Becker, 1980; Neely & Keefe, 1989). Further studies have 
established that priming effects are automatic and limited to 
lexical internal processing if the SOA is about 250 ms or 
less (Neely, 1977; Den Heyer, Briand, & Dannenbring, 
1983; De Groot, 1984). Therefore, in Experiment 2A, a 
prime, such as lamp, was presented 250 ms prior to the 
onset of a target, such as chandelier. Subjects were in- 
structed to read the prime and to make a decision to the 
target. Rather than the lexical decision task that is standard 
in priming experiments, semantic decision tasks such as "is 
it animate?" were used for two reasons. First, whereas 
semantic decisions are clearly based on semantic knowl- 
edge, the lexical decision task affords other bases for mak- 
ing responses and therefore does not necessarily demand 
use of semantics (Balota & Chumbley, 1984; Seidenberg & 
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McClelland,  1989). Second, because semantic decisions 
were used, fillers were constructed that nullified retrospec- 
tive priming (i.e., when a response is influenced by a subject 
evaluating the pr ime- targe t  relationship). Any influence of  
retrospective checking can be eliminated in a semantic 
decision task such as "is it animate?" by including related 
but inanimate filler pairs (e.g., house-cottage); i f  the num- 
ber  of  these fillers equals the number of  related pairs for 
which the response to the target is "yes," relatedness no 
longer cues the response. The particular choice of  semantic 
decision is also important. Experiment 2A featured broad 
semantic decision tasks in order to discourage subjects from 
generating specific exemplars of  the category. For  example,  
it is unlikely that subjects would spend time generating 
exemplars of  living things or things made by humans be- 
cause these categories have so many members.  Narrow 
semantic decision or categorization tasks (e.g., "is it a bird") 
are inappropriate because they may cue specific exemplars,  
thereby altering the basis of  obtained effects (Jared & Sei- 
denberg, 1992). 

Method 

Subjects 

Forty-eight McGill University undergraduates were paid $3 
each. Twenty-four subjects were randomly assigned to each list. 
None had participated in Experiment 1. 

Materials 

The semantically similar prime-target items consisted of 90 
pairs of concepts varying in degree of featural similarity. They are 
presented in Appendix A, organized in pairs of columns so that the 
primes are directly left of their corresponding targets. Also in- 
cluded were the 10 superordinate concepts paired with 10 typical 
exemplars. Experiment 2 was conducted simultaneously with the 
collection of the feature norms, and it was not known at that time 
that the norms would fail to render coherent concepts for the 
superordinate categories. Therefore, the superordinate-exemplar 
pairs were included in Experiments 2A and 2B, and the ANOVA 
of 2A, but were excluded from the regression analyses. 7 

There were four semantic decision tasks: "is it animate?", "is it 
an object?", "is it made by humans?", and "does it grow?". The 
similar prime-target pairs for the "is it animate?" task were birds 
and mammals, and the dissimilar primes were taken from among 
the tools and clothing (e.g., eagle-hawk vs. sandals-hawk). The 
similar prime-target pairs for the "does it grow?" task were fruits 
and vegetables, and the dissimilar primes were taken from among 
the furniture, kitchen items, vehicles, and weapons (e.g., lettuce- 
cabbage vs. stereo-cabbage). The similar prime-target pairs for 
the "is it an object?" task were furniture, kitchen items, vehicles, 
and weapons, and the dissimilar primes were taken from among 
the birds and mammals (e.g., pistol-rifle vs. cow-rifle). The sim- 
ilar prime-target pairs for the "is it made by humans?" task were 
tools and clothing, and the dissimilar primes were also taken from 
among the birds and mammals (e.g., shoes-boots vs. dog-boots). 

The test and filler trials were designed so that relatedness did not 
cue the response in any way. In each task, there were 50% "yes" 
and 50% "no" trials. The probability of a "yes" response following 
a "yes" or "no" prime was also 50% (although subjects did not 

respond to the prime). Furthermore, because semantic decisions 
were used, related "no" trials could be included with the same 
frequency as related "yes" trials (e.g., square-triangle in the "is it 
animate?" task). The proportion of related trials was 0.25, and half 
of the unrelated trials required a "no" response. In addition, there 
were 8 lead-in practice trials balanced in the same way. There was 
a separate "is it an adjective?" practice session that contained 24 
trials, also balanced in the same way. 

Two lists were constructed for each task so that subjects saw 
each target only once. Each list contained half of the targets with 
similar primes and the opposing half with dissimilar primes. Sub- 
jects were informed that a recognition test would be administered 
following the practice session and each task; this was included to 
encourage them to attend to the primes. Five primes were used as 
recognition test stimuli, and 5 words not appearing in any task 
were used as foils. 

Procedure 

In Experiments 2A, 2B, and 3A, presentation of stimuli and 
recording of responses were accomplished using Micro Experi- 
mental Laboratory (MEL) software running on an IBM XT-286 
microcomputer (International Business Machines, Armonk, NY). 
Each subject performed the four tasks in a blocked fashion. Sub- 
jects were told that all words were meant to be nouns. Each 
priming trial proceeded as follows: an intertrial interval of 1,500 
ms; an asterisk in the center of the screen for 250 ms; a 250-ms 
pause; a prime for 200 ms; a mask that consisted of 
&&&&&&&&& for 50 ms; and the target until a response was 
made. The experimenter asked subjects to read the first word (the 
prime) silently and to respond as quickly and accurately as possi- 
ble to the second word (the target). Examples of positive and 
negative exemplars were provided: animate (i.e., something that is 
alive; e.g., a cockroach is but a keyboard is not); object (i.e., 
something that is tangible or concrete; e.g., a pair of scissors is an 
object, but the sky is not); made by humans (i.e., something that is 
manufactured by people; e.g., a razor but not a butterfly); and 
grows (i.e., something that grows on its own; e.g., a spider grows, 
but a door does not). A session began with the practice trials. For 
the recognition tests that followed the practice and each task, 
subjects were asked to indicate whether or not each of 10 items had 
appeared as a prime. It took approximately 40 rain for subjects to 
complete the experiment. 

Results 

Latency and accuracy of  responses were recorded. Al l  
response latencies greater than three standard deviations 
from the mean of  the correct test trials in each task were 
replaced by the cutoff value. The percentage of  response 
latencies affected by this procedure were 1.4% for "is it 

7 Emu-ostrich and starling-crow were also removed from the 
regressions because it was apparent that few people knew the 
meanings of emu or starling. In Experiment 2b, 11 of 40 subjects 
reported being completely unfamiliar with emu, and 8 were unfa- 
miliar with starling. Furthermore, in Experiment 1, 13 of 30 
subjects either failed to list any features for emu or listed incorrect 
ones such has fur; 10 of 30 subjects listed inappropriate features 
for starling. Finally, in separate norms in which subjects rated the 
familiarity of the concepts on a scale of 1 to 7, the mean rating for 
emu was 2.45 (190th of 190) and for starling was 2.95 (184th of 
190). 
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animate?"; 1.5% for "is it an object?"; 2.4% for "is it made 
by humans?"; and 0.6% for "does it grow?". Overall, sub- 
jects made errors on 2.2% of similar trials and 3.7% of 
dissimilar trials. By task, the errors were "is it animate?", 
similar = 1.9%, dissimilar = 5.8%; "is it an object?", 
similar = 1.9%, dissimilar = 2.9%; "is it made by hu- 
mans?", similar = 3.1%, dissimilar = 3.0%; and "does it 
grow?", similar = 2.3%, dissimilar = 4.0%). The errors 
were not further analyzed due to their low frequency. 

OveraH Resul~ 

Although the regressions were the primary focus of  at- 
tention, ANOVAs were also conducted in order to illustrate 
that significant overall priming effects were obtained. There 
were two factors: prime type, with 2 levels: similar and 
dissimilar; and task, with 4 levels: "is it animate?", "is it an 
object?", "is it made by humans?", and "does it grow?". In 
the analyses by subjects, both task and prime were within 
subjects. In the item analyses, prime type was within items, 
and task was between. 

Overall, decision latency was faster for targets preceded 
by a similar prime (M = 760 ms, SE = 10 ms) than by a 
dissimilar prime (M = 807 ms, SE = 11 ms), Fx(1, 46) = 
36.32, p < .0001, and F2(1, 96) = 31.98, p < .0001. 
Decision latency also differed by task, F1(3, 138) = 47.72, 
p < .0001, and F2(3, 96) = 34.80, p < .0001. Mean latency 
by task was animate, 723 ms (SE = 14 ms); grow, 752 ms 
(SE = 10 ms); object, 758 ms (SE = 9 ms); and made by 
humans, 926 ms (SE = 17 ms). No interaction between task 
and prime type was apparent, F < 1 by subjects and items. 

Planned comparisons showed that decisions were faster 
for targets preceded by similar primes in three of  the four 
tasks: "is it animate?", 692 ms (SE = 17 ms) versus 755 ms 
(SE = 21 ms), FI(1, 184) = 13.59, p < .0004, and F2(1, 
192) = 6.02, p < .02; "is it an object?", 733 ms (SE = 11 
ms) versus 783 ms (SE = 12 ms), FI(1, 184) = 10.35, p < 
.002, and F2(1, 192) = 7.59, p < .007; and "is it made by 
humans?", 899 ms (SE = 23 ms) versus 952 ms (SE = 24 
ms), FI(1, 184) = 7.19, p < .009, and F2(1, 192) = 4.26, 
p < .05. However, the priming effect in the "does it grow?" 
task was not significant, 741 ms (SE = 13 ms) versus 764 
ms (SE = 15 ms), FI(1, 184) = 3.52, p < .07, and F 2 < 1. 

Regression Analyses 

Featural similarity was computed as the cosine of  the 
angle between two concept vectors. In the individual fea- 
tures representation, each of  the 190 concepts was a vector 
of  production frequencies across 1,242 features. Cosine 
between pairs of  concept vectors increased linearly with 
number of  shared features and decreased linearly with num- 
ber of  distinct features. A cosine of  1 corresponded to 
identical concepts, and 0 corresponded to concepts that 
shared no features. For example, using the individual fea- 
tures representation, sofa and couch had a cosine of  .879, 
pineapple and coconut had a cosine of  .415, screwdriver 
and drill had a cosine of  .214, and chair and whale were 

orthogonal (cosine = 0). In the correlated features repre- 
sentation, a concept was a vector across 1,190 correlated 
feature pairs. Thus, cosine increased with number of  shared 
correlated pairs and decreased with number of  distinct pairs. 
It also decreased when one of  the concepts violated a 
correlation, but the other did not. Thus, a negative cosine 
was possible because violated correlations were represented 
by negative integers. According to the correlated features 
representation, sofa and couch had a cosine of  .963, pine- 
apple and coconut had a cosine of  .219, screwdriver and 
drill had a cosine of  .061, and chair and whale were again 
orthogonal (cosine = 0). 

Prime-target similarity in terms of  individual features 
was used to predict priming effects on an itemwise basis by 
predicting mean response latency for related prime-target 
pairs (lamp-chandelier) after mean response latency for 
unrelated pairs (goose-chandelier) had been forced into the 
regression equation (i.e., had been partialed out). Similarity 
in terms of  correlated features was then used to predict the 
residual variance. Thus, by first entering similarity in terms 
of  individual features, the burden of  proof was placed on 
showing an influence of  correlated features. Because the 
analyses on the norms revealed that correlated features were 
more prominent for living things, regressions were con- 
ducted separately for living things and artifacts, s 

Similarity in terms of  individual features predicted prim- 
ing effects for artifacts, r 2 = .15, F(1, 51) = 8.96,p < .005, 
but not for living things, r 2 = .04, F(1, 31) = 1.30, p > .3. 
Conversely, similarity in terms of  correlated feature pairs 
predicted priming effects for living things, r 2 = .25, 
F(1, 30) = 10.19, p < .004, but not for artifacts, r 2 = .003, 
F <  1. 9 

s Performing regressions in this manner essentially treats sub- 
jects as a fixed effect (Clark, 1973). The regressions do, nonethe- 
less, represent a strong test because the independent variables were 
based on norms that were conducted using a separate sample of 
subjects, and, did not, in any way, mention similarity among 
concepts. Furthermore, no norming subject saw both members of 
a prime-target pair. The same arguments hold for the regression 
analyses of Experiment 3 because the subjects of the norming 
experiment were distinct from those of the feature verification and 
feature typicality rating experiments. 

9 Our measures of semantic similarity, though significant pre- 
dictors of priming effects, accounted for only about 25% of the 
variance. Predictive accuracy may have been reduced if it was the 
case that subjects were making implicit semantic decisions to the 
primes. Taking the "is it animate?" task as an example, the primes 
for the similar test trials were animate (e.g., caribou-moose), but 
the primes for the dissimilar control trials were inanimate (e.g., 
drill-moose). Decision stage latency may thus have been reduced 
for similar targets, resulting in an uniform increment of the prim- 
ing effect across the prime-target pairs. If this was the case, 
predictive accuracy in the regression analyses would have been 
reduced (or unaffected) because the correlations depended on 
featural similarity for the similar, but not for the dissimilar, pairs. 
That is, predictive accuracy depended on the variation in featural 
similarity among only the similar prime-target pairs. The critical 
point here is that all similar primes possessed the decision feature 
(i.e., was animate, was an object, was made by humans, or was 
grown). Therefore, the fact that the similar, but not the dissimilar, 
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In order to better understand the factors involved in 
predicting living-thing priming effects, the four main pa- 
rameters of the correlated features representation were ma- 
nipulated. These parameters were including only signifi- 
cantly correlated feature pairs rather than all pairs; 
representing feature-pair violations; restricting the analysis 
to features that occurred in at least three concepts; and 
representing each significantly correlated feature pair by a 
single vector, regardless of the strength of its relationship. 

Table 2 summarizes the regression analyses. Each regres- 
sion used a representation in which all parameters except 
the highlighted one were identical to the correlated features 
representation of Experiment 1. First, the priming effects 
were not predicted when the representation included all 
feature ~airs, rather than being restricted to correlated ones, 
F < 1.1UThis result is consistent in spirit with the configural 
cue model of Gluck, Bower, and Hee (1989). In their model, 
there would be a large weight between a feature-pair node 
and a category node only if the co-occurrence pattern of the 
feature pair is informative for category membership. That is, 
although the model includes a configural cue node for each 
feature pair, only informative pairs influence processing to 
any degree. This result is also consistent with models such 
as Medin and Schaffer (1978) and Hintzman (1986), in 
which the major factor that determines the degree to which 
a feature pair influences the similarity metric is the extent to 
which they co-occur. The similarity metric, in turn, directly 
affects categorization. 

Second, when information about violated correlations 
was removed from the representation, prediction was no 
longer significant, p > .09. Therefore, important informa- 
tion is carded by the feature pairs that violate the correla- 
tional structure, as well as those that obey it. Third, when 
the correlated features representation was constructed from 
those that occurred in two or more concepts, predictions 
were unaffected, p < .006. However, if correlated feature 
pairs were constructed from all of the features, predictions 
were nonsignificant (p > .2) because of the many spurious 
correlations involving features that occurred in only one 
concept. The final analysis involved weighting pairs by how 
strongly they were correlated, which might conceivably 
increase predictive accuracy. To construct such a represen- 
tation, significantly correlated pairs were represented by 
1-10 vectors, contingent upon amount of shared variance. 
Strength of correlation was coded discretely by using it to 
determine the number of units assigned to a feature pair 
using the following rule: for one, .064 -< r 2 < .164; for two, 
.164 --- r 2 < .264; for three, .264 --< r 2 < .364; and so on. 
Predictions using this scheme were similar to the un- 
weighted version of the correlated features representation, 
p < .009. Finally, all of these representations predicted less 
than 1% of the residual variance of artifact-priming effects. 

primes were animate (or an object, or made by humans, or grown) 
may have adversely affected the regression results, but probably 
did not influence them at all. 

Table 2 
Manipulating the Parameters of the Correlated Features 
Representation When Predicting Human Priming 
Effects for Living Things 

Manipulated parameter r2pmi,a F(1, 30) p 

Original representation .25 10.19 <.004 
Including all pairs, correlated or 

not .01 <1 
Removing violation information .09 2.93 >.09 
Including features that were part 

of 2 or more concepts .23 9.04 <.006 
Including features that were part 

of 1 or more concepts .04 1.38 >.2 
Weighting with strength of 

correlation .21 8.00 <.009 
Note. Each manipulation involved changing only the named pa- 
rameter; all other parameters matched the original representation. 

Nonlinearities 

One surprising result was that similarity in terms of 
individual features failed to predict priming effects for 
living things. This suggests that if correlated features are 
particularly dense in some part of semantic space, featural 
similarity is not adequately captured by a linear combina- 
tion of individual features. There are three factors that may 
have caused the individual features similarity measure to 
fail to predict the living-thing priming effects. First, because 
the measure was linear with respect to number of shared 
features, it did not behave as a positively accelerating func- 
tion (see Shepard, 1958, 1987, for a discussion of the 
nonlinear generalization-similarity gradient). A number of 
models have incorporated mechanisms that transform ex- 
emplar similarity into a positively accelerating function 
(e.g., Hintzman, 1986; Medin & Schaffer, 1978; Neuman, 
1974). In Neuman's model, for example, storing an item in 
memory involved keeping a count of shared features and 
feature pairs. Therefore, if concepts shared three features, 
they had 6 units in common; if they shared four features, 
they had 10 units in common; five features, 15 units, and so 
on. Thus, each additional shared feature had a greater im- 
pact on similarity, producing a positively accelerating gra- 
dient, rather than a linear one. 

Second, similarity in terms of individual features in- 
creases with shared features and decreases with distinct 
ones. Likewise, similarity in terms of correlated features 
increases with shared pairs and decreases with distinct ones. 
A point of divergence is where a shared individual feature 
decreases similarity in terms of correlated features. If  one 

lo One other difference between the individual and correlated 
feature representations was that the correlated feature representa- 
tion was based only on the 240 features possessed by three or more 
concepts. To ensure that the results were not due to this, the 
regressions were repeated with similarity in terms of those 240 
individual features replacing the correlated features measure. Pre- 
diction of residual priming effects with this individual features 
representation was nonsignificant for artifacts, r 2 = .03, F(1, 
50) = 1.53, p > .2, and living things, r 2 = .004, F < 1. 
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concept obeys a correlation but the other violates it, simi- 
larity in terms of correlated features is lower than if the 
second concept possessed neither feature. Because the re- 
gression analyses revealed that information about correla- 
tional violations was important for predicting priming ef- 
fects, we analyzed the number of  cases where one concept 
obeyed a correlation but the other violated it. The mean 
number of  these cases per concept was greater for living 
things (M = 21.3, SE = 1.7) than for artifacts (M = 8.4, 
SE = 1.1), t(86) = 6.82, p < .0001, suggesting that living 
things may have been more affected by this second depar- 
ture from linearity. 

A third possibility is that similarity in terms of individual 
features failed to predict living-thing priming effects simply 
because its variance was too low. This seems unlikely for 
two reasons. First, in Experiment 2B below, similarity in 
terms of individual features predicted living-thing similarity 
judgments. Second, the standard deviations of  the two mea- 
sures patterned identically for artifacts and living things. 
That is, for both types of  concepts, the standard deviation of 
the similarity measure was larger for correlated features 
(artifacts: M = .382, SD = .313; living things: M = .400, 
SD = .231) than for individual features (artifacts: M = .522, 
SD = .207; living things: M = .571, SD = .185). 

In summary, because both correlated feature pairs and 
violations of  them were more dense for living things, fea- 
tural similarity was not adequately captured by a linear 
measure over individual features (i.e., independent cues). In 
contrast, because the features of  artifacts tend to be sparsely 
intercorrelated, individual features were sufficient. Further 
discussion is deferred until after Experiment 2B. 

E x p e r i m e n t  2B 

A separate set of  subjects were shown the similar p r ime-  
target pairs and were asked to rate the similarity of  the 
things to which the words referred on a scale of  1-7. There 
were two main hypotheses. First, when the computation of  
word meaning is viewed in terms of an attractor network, 
correlated features influence the speed of the computation 
(i.e., rate of  convergence to a stable state). Because rating 
concept similarity is not a speeded task, correlated features 
should not predict similarity ratings, even for living things. 
Second, the degree to which individual features should 
predict similarity ratings for either artifacts or living things 
is uncertain because other sources of  information influence 
these judgments. 

M e ~ o d  

Subjects 

Forty McGill University undergraduates were paid $3 each. 
None had participated in Experiments 1 or 2A. 

Materials 

List 1 contained the concept pairs in one order (e.g., rug-mat) 
and List 2 contained them in the reverse order (e.g., mat-rug). 

Both orderings were used because Whitten, Suter, and Frank 
(1979) have reported order effects in a similarity-rating task. Each 
list contained all 90 exemplar pairs, the 10 superordinate- 
exemplar pairs, and 20 fillers. The fillers ranged from very dis- 
similar (e.g., ant-tripod) to slightly similar (e.g., beach-sandbox) 
in order to pull subjects into the lower regions of the scale. Only 
a few dissimilar fillers were included because we wanted the 
ratings to reflect the subtle differences in the pairs of interest. 
Additionally, 10 lead-in practice pairs that covered a range of 
perceived similarity (according to the intuitions of the first author) 
were used to orient subjects to the task. 

Procedure 

Word pairs were presented on a computer screen, and subjects 
were asked to rate the similarity of the things to which the words 
referred on a scale of "1 = not at all similar" to "7 = exactly the 
same thing" by pressing an appropriate number on the keyboard. 
Examples were given. Subjects were told that they could take their 
time. They were also asked to tell the experimenter if they were 
unfamiliar with the meaning of any word. The 10 lead-in pairs of 
concepts were presented in random order. Following the lead-in 
pairs, the 90 test and 20 filler pairs were presented randomly. Each 
pair of stimuli was presented on the same line, centered on the 
screen with five spaces separating them. There was a 1,500-ms 
intertrial interval. It took about 15 rain to complete the experiment. 

Results 

Overall, subjects reported being unfamiliar with one or 
both of  the words on 1.5% of the trials, and these were 
discarded. Ratings were averaged across the two orders. No 
ANOVAs were conducted because there was no dissimilar 
condition in this experiment. For the regression analyses, 
featural similarity in terms of both individual and correlated 
features was again computed as the cosine of  the angle 
between two concept vectors. Predicting similarity ratings 
differed from predicting priming effects in that no dissimilar 
pairs were available to act as control items. Thus, individual 
features were used to predict the similarity ratings, and 
correlated feature pairs were used to predict the residual 
variance. Again, regressions were conducted separately for 
living things and artifacts. 

Similarity in terms of individual features predicted the 
ratings for both artifacts, r 2 = .33, F(1, 52) = 26.06, p < 
.001, and living things, r 2 = .12,/7(1, 32) = 4.22, p < .05. 
In contrast, similarity in terms of correlated feature pairs 
predicted the ratings for neither artifacts, r 2 = .01, F < 1, 
nor living things, r 2 = .03, F < 1. 

In Experiment 2A, individual features predicted priming 
effects for artifacts, and the opposite held for living things. 
Insofar as similarity ratings reflect individual rather than 
correlated features, they should predict priming effects for 
artifacts but not for living things. To test this, the regression 
analyses of  Experiment 2A were repeated, except that rated 
similarity replaced similarity over individual features. 
Similarity ratings predicted priming effects for artifacts, 
r 2 = .10, F(1, 51) = 5.50, p < .03, but not for living things, 
r 2 = .05, F(1, 31) = 1.60, p > .1. In contrast, similarity in 
terms of  correlated feature pairs predicted residual priming 
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effects for living things, r 2 = .19, F(1, 30) = 7.17, p < .02, 
but not for artifacts, r 2 = .04, F(1, 50) = 2.14, p > .1. 

Discussion 

The results of Experiment 2 are important for four main 
reasons. First, they suggest that the mechanism that com- 
putes word meaning exploits statistical regularities among 
semantic features, as do attractor networks, Second, they 
suggest that similarity is determined by a combination of 
featural overlap and other knowledge, where the additional 
knowledge plays a larger role in slower tasks that require 
considerable reasoning. Third, they provide evidence that 
featural similarity is a primary source of short SOA priming 
effects and thus a primary organizing principle of semantic 
memory. Finally, they demonstrate that correlated features 
are more prominent in the on-line processing of living 
things than of artifacts. 

Correlated Features and Computing Word Meaning 

An influence of correlated features was found in short 
SOA priming, but not in similarity rating. In a connectionist 
framework, short SOA priming can be conceptualized as 
reflecting interconcept distance in semantic space (for sim- 
ilar proposals, see Kawamoto, 1993; Masson, 1995; Plaut, 
1995; Sharkey, 1989). Computing the meaning of a word 
can be viewed as driving semantic memory from the state 
that it was in prior to reading or hearing that word to the 
state corresponding to its meaning. In a short SOA priming 
task, the meaning of the prime determines the prior state for 
computing the meaning of the target. Because prime-target 
similarity in terms of individual features is a major deter- 
minant of the distance from the start to the end state, it 
influences the degree of facilitation. Furthermore, because 
feature correlations affect the manner and speed with which 
activation accrues, the particular pairs of features that the 
prime and target share also affect the speed with which the 
target concept is computed. In fact, because feature corre- 
lations were dense in the living things, their influence over- 
whelmed that of individual features. These points are dis- 
cussed in more detail when the model is described following 
Experiment 3. 

ratings to choose a set of prime-target pairs that were 
significantly more similar than those used by Moss et al. 
(1995) and Shelton and Martin (1992). Word-association 
norms showed that no prime ¢:> target associations existed. 
With these items, they demonstrated automatic semantic- 
priming effects in four conditions, short SOA and single- 
presentation schemes paired with semantic and lexical de- 
cision tasks. Thus, Experiment 2A, particularly in 
conjunction with McRae and Boisvert, demonstrates that 
automatic priming taps word meaning (rather than solely 
tapping associations at the word-form level) and that se- 
mantic relatedness can be defined, at least in part, by fea- 
tural similarity. 

Aspects of Similarity 

In contrast to the priming study, individual features pre- 
dicted similarity ratings, but no influence of correlated 
features was detected. This result implies that any influence 
of correlated features on computing word meaning was 
masked by the leisurely paced and relatively complex 
similarity-rating task. In Experiment 2B, similarity in terms 
of individual features predicted the ratings quite well. In 
fact, for the artifacts, it predicted 33% of the variance in the 
similarity ratings, versus 15% of the variance in the priming 
data. Further analyses showed that knowledge of taxonomic 
relationships among animals played an important role in the 
ratings, consistent with the knowledge-based theories of 
Gelman and Wellman (1991) and Medin (1989). Consider 
some of the mammal stimuli, such as cow-buU and deer- 
fawn. According to the norms, the features of cow include 
(is female), (is docile), and (produces milk), but those of 
bull include (is male), (is aggressive), and (has horns), so 
that the resulting cosine was .249, which was the 79th 
highest of the 88 concept pairs. In contrast, people know 
that cows and bulls are different genders of the same ani- 
mal; consequently, their mean similarity rating of 5.4 was 
25th highest of the 88 pairs. A post hoc analysis of the four 
living-thing categories reinforced the notion that similarity 
judgments between mammals were based on criteria outside 
the realm of the featural representations. The proportion of 
variance of the similarity ratings accounted for by individ- 
ual features was: birds (17%), fruit (19%), vegetables 
(15%), and mammals (1%). 

Semantic Relatedness 

Experiment 2A is the first to demonstrate that priming 
effects can be predicted on an item-by-item basis from an 
empirically derived measure of featural similarity. How- 
ever, one question that needs to be addressed is whether the 
effects might have been due to associative relationships. 
There are two major arguments against this hypothesis. 
First, Experiment 2A did not simply demonstrate an overall 
priming effect using semantically related prime-target 
pairs. Rather, the magnitude of item-by-item priming effects 
was predicted by featural similarity, thus providing strong 
evidence that it was the basis of task performance. Second, 
McRae and Boisvert (1997) have recently used similarity 

Living Things Versus Artifacts 

Why do the features of living things tend to be more 
densely intercorrelated than those of artifacts? Consider the 
constraints on the structure of the two types of objects. The 
structure of living things is determined by genetic- 
evolutionary principles; plants and animals have evolved 
over time into their present form. Correlated sets of features 
have evolved in parallel and become instantiated in a num- 
ber of plants and animals. For example, it might be expected 
that sets of features have become instantiated in a number of 
animals that live in a specific environment. A mammal that 
hopes to survive in a cold environment like the Canadian 
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north most likely has fur, padded feet, and warm blood. In 
contrast to living things, artifacts are created by humans 
and, as such, are subject to constraints imposed by society. 
Typically, artifacts are designed to fulfill a specific function 
and must be esthetically and economically attractive to 
potential consumers. Other factors that may affect the struc- 
ture of an artifact include the availability and cost of mate- 
rials, present-day fads, and various whims of the designer 
and manufacturer. Because of these rather arbitrary con- 
straints, the structural features of artifacts tend to be much 
more variable than those of living things, with the result that 
features tend to be less densely intercorrelated across arti- 
fact concepts (see Gelman, 1988, and Keil, 1989, for related 
arguments). Surface color serves as a particularly salient 
example of the arbitrariness of many artifact features. Hum- 
phrey, Goodale, Jacobson, and Servos (1994) have shown 
that color is a salient cue when people name living things, 
but not when they name artifacts. This presumably occurs 
because color is less variable in living things (e.g., most 
bananas are yellow, most moose are brown) and often 
carries important information (e.g., bananas turn from green 
to yellow to brown, and it is important to know what this 
means). In contrast, the color of an artifact is often arbitrary 
(a chair can be painted any color), although social conven- 
tions do produce tendencies for some objects to be certain 
colors (e.g., toasters tend to be silver or white), and color is 
sometimes tied to function (stop signs are painted red to be 
perceptually salient). In summary, the features of living 
things may be more densely intercorrelated because the 
constraints tend to be more arbitrary for artifacts than for 
living things. 

It is also possible that people explicitly perceive living 
things to have a greater number of correlated features, so 
that any real-world difference is exaggerated in mental 
representations of both an explicit and implicit nature. It 
may be that mental representations of artifacts contain fewer 
correlated features because people treat them as items that 
are designed to perform a single function. Consequently, 
although the features of certain artifacts may be intercorre- 
lated, people may be less likely to store this information 
because a single feature is receiving the bulk of their atten- 
tion. In contrast, people tend to treat living things as com- 
plex beings that express many potential behaviors and have 
many potential functions. Consequently, people may attend 
to many features of each living thing, and this attentional 
difference might increase the likelihood of implicitly and 
explicitly encoding feature co-occurrences. Empirical sup- 
port for this notion has been obtained by BiUman (1989) and 
Billman and Knutson (1996) who have demonstrated that 
feature correlations are easier to learn when they are part of 
a system of correlations. In summary, due to attentional 
factors, representational differences between artifacts and 
living things may be exaggerated relative to objective real- 
world differences. 

EXPERIMENT 3 

A second pair of yoked tasks, speeded feature verification 
(3A) and untimed feature typicality rating (3B), were used 

to investigate two main hypotheses. First, featural represen- 
tations should better capture performance in speeded veri- 
fication than in feature typicality rating because the rating 
task is relatively slow and involves complex decision pro- 
cesses (e.g., "Should I rate this feature as a 5 or a 7?"). 
Second, if correlated features play a role in the computation 
of semantic representations, their influence should be strong 
in speeded verification, but not in feature typicality rating. 

Thirty-seven features that were correlated with a number 
of others were designated as target features, and each was 
paired with two concepts. The concepts were chosen so that 
production frequency of the target feature was equated 
between groups; this measure represented the strength of 
association between the concept and feature according to 
the individual features representation. The groups differed 
in that the features of one of the concepts were strongly 
intercorrelated with the target feature, and the features of the 
other were weakly intercorrelated with it. For example, the 
target feature (hunted by people) was correlated with 16 
others. As shown in Figure 2, deer contained 11 of those 
features, but duck contained only 4. These items enabled 
two sets of analyses. First, if the temporal dynamics of 
computing semantic representations depend on correlated 
features, (hunted by people) should be verified more quickly 
for, but not rated as more typical of, deer than duck. How- 
ever, more importantly than the t tests that this design 
permitted, regression analyses were conducted on the 74 
items (37 target features by two concepts each). As in 
Experiment 2, the key test was whether the correlated fea- 
tures measure (intercorrelational strength, as described be- 
low) predicted variance above and beyond that of the indi- 
vidual features measure (production frequency from 
Experiment 1). In addition, seven other independent vari- 
ables were used to predict feature verification latencies in 
Experiment 3A and typicality ratings in 3B. These regres- 
sion analyses provided a more complete picture of the 

Target Feature = <hunted by people> 

deer duck 

<is herbivorous> 
<has antlers> 
<lives in the woods> 

'~ ~ <lives in the wild> 
I ~  <a mammal> 

<an animal> 
<is brown> 
<has hooves> 
<has four legs> 
<has fur> 
<has legs> 

Intercorrelational Strength = 326 

" ~  <an animal> 
m <lives in water> 

~ <migrates> 
<swims> 

Intemotrelational Strength = 61 

Figure 2. Example of an item from Experiment 3. The target 
feature, (hunted by people), was more highly correlated with 
features of deer (strong group) than of duck (weak group). 
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factors that underlie the relationship between a concept and 
its features and the relevance of  these factors in different 
task environments.  Experiment 3 extended Experiment 2 
in that the tasks involved decisions to specific features, 
thus providing a more direct test of  the influence of  corre- 
lated features. In addition, it tested the efficacy of  a contin- 
uous measure of  the strength of  correlation between feature 
pairs. 

Experiment  3A 

In the feature verification task, a concept name, such as 
deer, was presented for 400 ms, fol lowed by a target feature 
name, such as (hunted by people).  Subjects were asked to 
indicate, as quickly and accurately as possible, whether or 
not the target feature was reasonably true of  the concept. For  
example,  the correct response would be "yes" to deer-  
(hunted by people),  but "no" to horse (has  scales). A "rea- 
sonably true" rather than an "always true" criterion was 
necessary because, for example,  in an "always true" deci- 
sion task, a p p l e ( i s  red) and knife-(is sharp) would require 
"no" responses. 

Me~od 

Subjects 

Twenty McGill university undergraduates were paid $2 each. 
None had participated in Experiments 1 or 2. 

Materials 

There were 74 concepts, each with an associated target feature 
(see Appendix C). The main independent variable, intercorrela- 
tional strength, was continuous and was defined as the summed 
shared variance between the target feature and the other features 
within the concept. Only feature pairs from the correlated features 
representation were included. Each target feature appeared with 
two concepts. The intercorrelations were stronger for the "strong" 
group (M = 175.4, SE = 12.0) than for the "weak" group (M = 
19.7, SE = 3.6), t(36) = 14.42, p < .0001 (one-tailed). An 
example target feature, (hunted by people), is shown in Figure 2 
with its associated concepts deer and duck. According to the 
norms, (hunted by people) is more strongly intercorrelated with 
features of deer (intercorrelational strength --- 326) than of duck 
(intercorrelational strength = 61). 

A number of aspects of the stimuli thought to be relevant to 
concept-feature relationships were equated. Production frequency, 
which roughly reflects a feature's accessibility when a concept is 
computed from its name, was equated strong (M = 10.5, SE = 
0.7), weak (M = 10.4, SE = 0.8), t(36) = 0.35,p > .4 (two-tailed). 
In addition, verification latency or typicality rating may be influ- 
enced by a feature's salience as defined in relation to other features 
of the concept. This influence might be independent of the fea- 
ture's absolute production frequency. Therefore, features were 
ranked within each concept on the basis of production frequency, 
and target feature rank was equated across groups: strong (M = 
8.3, SE = .7), weak (M = 8.1, SE = .7), t(36) = 0.23, p > .8 
(two-tailed). It was also thought that familiar concepts might be 
computed more quickly or have higher asymptotic levels of acti- 
vation, thus speeding verification latencies as in the word- 

frequency effect (McRae, Jared, & Seidenberg, 1990). Further- 
more, subjects might be more comfortable rating features of 
familiar concepts, resulting in systematically higher ratings. Fa- 
miliarity was operationalized by having a separate group of 20 
subjects judge the familiarity of the "thing that the word refers to" 
on a 7-point scale. This variable was equated between groups, 
strong (M = 5.4, SE = 0.2), weak (M = 5.3, SE = 0.2), t(72) = 
0.01, p > .9 (two-tailed). Finally, in regression analyses designed 
to predict sentence-verification latencies (e.g., "robin has wings"), 
Ashcraft (1978) found that the total number of features produced 
for a concept in a norming task was a primary predictor, presum- 
ably because it reflects the ease with which a concept's features 
can be accessed. Therefore, this factor was also roughly equated 
(strong: M = 298, SE --- 4; weak: M = 287, SE = 5), t(72) = 1.70, 
p > .09 (two-tailed). Although the difference might be considered 
marginally significant, it is less than 1/3 of a feature per concept 
per subject. In addition, this variable was not a significant predic- 
tor in Experiment 3A or 3B. 

In summary, 74 stimuli were constructed that varied on a num- 
ber of dimensions considered potentially relevant to concept- 
feature relationships. Regression analyses were used to investigate 
the factors that influenced performance on feature verification and 
feature typicality rating. In addition, 37 pairs of matched stimuli 
allowed for a categorical test of the influence of correlated fea- 
tures. The strong and weak groups differed in terms of intercor- 
relational strength and were equated in terms of production fre- 
quency, ranked production frequency, concept familiarity, and 
number of features produced for that concept. 

Note that the items were not segregated on the basis of artifact 
versus living thing in this experiment. Instead, we took advantage 
of the fact that there do exist artifact features that are highly 
intercorrelated. In order to select a sizable set of items, target 
features were chosen so that they were correlated with a number of 
others, regardless of whether they were associated with artifact or 
living-thing concepts. Thus, the artifact-living thing distinction 
was neither manipulated nor relevant in the present experiment. 

Two lists were constructed so that no target feature was pre- 
sented twice to a subject. Although 13 concepts appeared with 2 
target features, repetitions were assigned to different lists so that 
subjects saw each of these concepts only once. However, because 
parakeet appeared with 3 features, it appeared twice in List 1. 
Also, because carpet appeared with 4 features, it appeared twice in 
each list. List 1 contained 18 items from the strongly intercorre- 
lated group and 19 items from the weak group. List 2 contained 19 
strong items and 18 weak ones. List 1 contained 16 living things 
and 21 artifacts. List 2 contained 15 living things and 22 artifacts. 
Thirty-seven filler items were included for which the feature was 
not reasonably true of the concept (e.g., tangerine-(is silver)). 
Type of feature (e.g., part, function, characteristic action) was 
approximately matched between test features and fillers to prevent 
subjects from using it as a cue to their response. An additional 10 
fillers (5 positive, 5 negative) served as lead-in practice items. A 
unique set of 20 items (10 positive, 10 negative, type of feature 
matched) were used in a separate practice session. 

Procedure 

Subjects were instructed to press the yes key (always beneath 
their dominant hand) as quickly and accurately as possible if the 
feature was reasonably true of the concept or press the no key if it 
was not. The reasonably true response criterion was explained to 
them, and an example was provided. Following the practice ses- 
sion, 10 lead-in items were presented in random order, followed by 
the test items and fillers, randomly ordered. Each trial proceeded 
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as follows: a 1,500-ms intertrial interval; an asterisk in the center 
of the screen for 500 ms; a blank screen for 100 ms; a concept 
name for 400 ms; and the target feature until the subject responded. 
The experiment lasted approximately 5 min. 

Results 

Overall Results 

Latency and accuracy of responses were recorded. All 
latencies greater than 3 standard deviations from the mean 
of the correct test trials were replaced by the cutoff value 
(1.5% of the trials). Two-tailed paired samples t tests 
showed that subjects were faster to judge that a feature was 
part of  a concept if  it was strongly correlated with other 
features possessed by that concept (M = 820 ms, SE = 38 
ms) than if it was weakly correlated (M = 912 ms, SE = 46 
ms), t1(19) = 4.22, p < .001, tz(36) = 4.23, p < .001. 
Subjects committed errors on 8.6% of the test trials, and 
4.2% of  the negative filler trials. Using the square root of  
the number of  errors as the dependent variable (Myers, 
1979), it was found that more errors were committed in 
the weak condition (M = 13%) than in the strong condi- 
tion (M = 4.3%), t1(19) = 4.34, p < .001, t2(36 ) = 3.24, 
p < .003. 

Regression Analyses 

Regression analyses were conducted in order to obtain a 
detailed picture of  the relative influence of  a number of  
predictor variables on feature verification latency (as well as 
feature typicality rating in Experiment 3B). There were nine 
independent variables, including the five that were de- 
scribed earlier and were considered most likely to influence 
verification latency or typicality rating: intercorrelational 
strength, production frequency, feature rank, concept famil- 
iarity, and total responses per concept. The sixth variable 
was the number of  letters in the feature name, a factor that 
influences reading time but is not relevant to the rating task. 
This variable was automatically equated in the t tests be- 
cause the same features appeared in both groups. The sev- 

enth independent variable was the number of  features per 
concept from the individual features representation, which 
might influence a feature's activation through "gang" ef- 
fects (McClelland & Rumelhart, 1981). The eighth variable, 
feature superordinate typicality, was measured as the num- 
ber of  concepts in a superordinate category that contained 
that feature. For example, because five mammal concepts 
possessed (hunted by people), it received a feature-  
superordinate typicality score of  five for deer. A spillover 
effect of  this variable might be possible in that the feature 's  
typicality at one level of  the conceptual hierarchy might 
trickle down, thereby influencing ratings or verification 
latencies (Clapper & Bower, 1991). Finally, although Ash- 
craft (1978) found that concept typicality was not a primary 
predictor of  verification latency, it was included by vilx'ue of  
its ubiquitous use in concept experiments. 

A stepwise regression revealed that the best equation to 
predict verification latency included intercorrelational 
strength, concept familiarity, and feature rank, in that order. 
This equation predicted 40% of  the variance. Table 3 pro- 
vides a comprehensive picture of  the correlations among all 
the variables (it also includes feature typicality rating from 
Experiment 3B). Table 4 presents the results of  predicting 
feature verification latency with each independent variable. 
Intercorrelational strength was the best predictor (18%). 
Concept familiarity, feature rank, and production frequency 
were also reliable. Critically, intercorrelational strength pre- 
dicted verification latency over  and above production fre- 
quency (r 2 = .19, p < .001) and feature rank ( r  2 = .17, p < 
.001), the two individual features measures. Table 5 shows 
partial correlations that represent benchmarking an equation 
containing each of  the listed variables against one contain- 
ing those variables plus intercorrelational strength. Thus, 
each partial correlation represents the predictive ability of  
intercorrelational strength over and above the listed vari- 
ables. Critically, intercorrelational strength predicted a sig- 
nificant proportion of  residual variance at each step in these 
analyses. Thus, not only was a measure of  correlated fea- 
tures the best predictor of  verification latency, it accounted 

Table 3 
Correlations Among Feature Verification Latency, Feature Typicality Rating, and the Nine Independent 
Variables of Experiment 3 

Variables 1 2 3 4 5 6 7 8 9 10 11 

1. Verification latency - -  - .32* - .42* - .29"  .30* 
2. Feature typicality rating - .32"  - -  .22 .30* • 
3. Intercorrelational strength - .42"  .22 - -  • • 
4. Production frequency -.29* .30* • - -  - .79* 
5. Feature rank .30* • • - .79* - -  
6. Concept familiarity - .33* • • • • 
7. Concept typicality - .21 .28" .38* • • 
8. Feature-superordinate typicality - .21 • .32* • • 
9. Features per concept • • .21 • .36* 

10. Total responses per concept • • .26* • .32* 
11. Letters in feature name • - .20  • - .21 • 

- .33 • - .21 - .21 • • • 
• . 2 8 *  • • o - . 2 0  
• . 38  • . 3 2 "  .21 . 2 6 •  • 

• • • • • - . 2 1  
• • • . 3 6 *  . 3 2 "  • 

- -  • • . 2 0  • • 
• - -  • . 3 9 "  . 3 2 *  • 

• • - -  - . 2 2  - . 2 0  • 
.20 .39* - .22  - -  .64* • 
• . 3 2  • - . 2 0  . 6 4 "  - -  • 

Note. • indicates IrJ < .2. 
*p < .05. 
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Table 4 
Predicting Feature Verification Latency With Each 
Factor Separately 

Independent variable r r 2 F(1, 72) p 

Intercorrelational strength - . 42  .18 15.82 <.0003 
Concept familiarity - . 33  .11 8.80 <.005 
Feature rank .30 .09 6.86 <.02 
Production frequency - . 29  .08 6.41 <.02 
Feaane-superordinate typicality - .21 .05 3.43 >.06 
Concept typicality - .21  .04 3.32 >.07 
Letters in feature name .12 .02 1.10 >.2 
Total responses/concept .07 .00 <1 
Features/concept - . 04  .00 <1 

for a large proportion of unique variation over and above the 
eight other variables. 

Materials 

The 74 concept-target feature pairs that were used in Experi- 
ment 3A served as stimuli. Subjects rated each target feature as 
part of a set that included filler features. The number of filler 
features per concept depended on the number of target features 
paired with that concept. If the concept was paired with one target 
feature, at least four fillers were included. If it was paired with 2 
target features, at least five fiUers were used; greater than 2 target 
feaaaes, at least six fillers were used. All filler features were ones 
that had been listed by at least 2 subjects in Experiment 1. Because 
there were 316 features, the concepts were split roughly into two 
lists that were given to different subjects. A typical line in the 
rating form appeared as follows. 

yacht used on water 

Four versions of each list were created to reduce order effects. 

Procedure 

Experiment 3B 

The feature typicali ty rating task was conducted in a 
paper-and-pencil  format. Subjects rated "how typical  each 
feature is" of  the corresponding concept on a scale of  1-9. 
As in Experiment 2B, it was hypothesized that correlated 
features (intercorrelational strength) should not predict per- 
formance in the untimed rating task. In addition, given the 
results of  Experiment 2B in which individual features pre- 
dicted similarity ratings, although feature typicali ty ratings 
allow for other sources of  information to be used, the 
individual features measures (production frequency and 
rank) should predict them. 

Method 

Subjects 

Forty-three University of Western Ontario undergraduates par- 
ticipated for course credit. None had participated in Experiments 1, 
2, or 3A. 

Subjects were tested in groups. Their instructions were, "Each 
person has a 5 page booklet that contains a number of category 
names. By category, I mean the set of things in the world that have 
that label (e.g., the set of airplanes in the world). Each category 
name is paired with short descriptions of a few features (e.g., 
airplane has wings). Each feature is more or less typical of the 
things in that category. Your task is to rate just how typical each 
feature is. For example, has wings is extremely typical of airplanes 
because basically all airplanes have wings, whereas has a propel- 
ler is less typical because only some airplanes have a propeller. 
Please rate the typicality of each feature on a scale of 1 to 9, where 
1 = not typical, 5 = reasonably typical, and 9 = extremely 
typical." An example was provided. Subjects were told, "The 
following ratings represent my opinion; certainly, your opinion 
may differ. There is no 'fight' or 'wrong' answer." It took about 20 
min to complete the task. 

Results 

Overall Results 

As in Experiment 3A, subjects rated a feature as more 
typical of  a concept i f  it  was strongly correlated with other 

Table 5 
Predicting Feature Verification Latency: The Unique Contribution of Intercorrelational 
Strength Over and Above the Listed Variables 

Base equation rpmi~a r2pmi~t F(1, 74 - k - 1) p < 

faro - . 46  .21 19.24 .001 
faro, rank - .48  .23 20.75 .001 
faro, rank, prod - .47  .22 19.93 .001 
faro, rank, prod, fst - . 44  .20 16.51 .001 
faro, rank, prod, fst, ct - .41 .16 13.14 .001 
fam, rank, prod, fst, ct, lets - . 42  .18 14.16 .001 
faro, rank, prod, fst, ct, lets, tr/c - .45  .20 16.17 .001 
faro, rank, prod, fst, ct, lets, trio, f/c - . 44  .20 15.52 .001 
Note. fam = concept familiarity; rank = feature rank; prod = production frequency; fst = 
feature-superordinate typicality; ct = concept typicality; lets = letters in feature name; tr/c = total 
responses per concept; f/c = features per concept; k = the number of parameters in the equation, 
including intercorrelational strength. 
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features possessed by that concept (M = 7.2, SE = 0.15) 
than if it was weakly correlated (M = 6.6, SE = 0.15), 
t1(42) = 7.20, p < .0001, t2(36) = 3.81, p < .001. 

Regression Analyses 

The regression analyses used the same 9 independent 
variables that were used in Experiment 3A. The dependent 
variable was feature-typicality rating rather than verification 
latency. The results of the regression analyses differed from 
Experiment 3A. A stepwise regression showed that the best 
equation to predict feature verification included production 
frequency and concept typicality and accounted for 16% of 
the variance (intercorrelational strength, concept familiarity, 
and feature rank predicted 40% of the variance of verifica- 
tion latencies in Experiment 3A). The regression analyses 
also showed that correlated features were not a major de- 
terminant of feature typicality ratings. From Tables 3 and 6, 
it is evident that production frequency and concept typical- 
ity were the only variables that predicted feature-typicality 
ratings. Because intercorrelational strength was not a pre- 
dictor, no further analyses on it were appropriate. 

If intercorrelational strength was not a predictor of the 
ratings, why was there a significant difference in the t tests? 
Recall that because Ashcraft (1978) had found that concept 
typicality was not a predictor of verification latencies (a 
result that was replicated in Experiment 3A), it was not 
equated between groups. However, the regression analyses 
of Experiment 3B suggested that people tended to rate 
features as more typical when they were paired with typical 
concepts. Therefore, concept typicality may have been the 
major cause of the significant between-groups difference 
because concepts in the strong group were more typical on 
average, t(36) = 2.66, p < .02. 

Finally, if feature-typicality ratings reflect individual fea- 
tures and verification latencies reflect both individual and 
correlated features, then intercorrelational strength should 
predict verification latencies when the variance accounted 
for by feature-typicality rating is removed. Rated feature 
typicality predicted verification latency, r 2 = .10, F(1, 
72) = 8.24, p < .006, and intercorrelational strength pre- 
dicted a significant proportion of the residual variance, r 2 = 
.15, F(I, 71) = 12.29, p < .0008. 

Table 6 
Predicting Feature-Typicality Rating With Each 
Factor Separately 

Independent variable r r 2 F(1, 72) p 

Production frequency .30 .09 6.86 <.02 
Concept typicality .28 .08 6.05 <.02 
Intercorrelational strength .21 .05 3.52 >.06 
Letters in feature name -.20 .04 2.87 >.09 
Feature rank .16 .03 1.99 >.1 
Features/concept .16 .03 1.91 >. 1 
Total responses/concept .14 .02 1.43 >.2 
Feature-superordinate typicality .05 .00 < 1 
Concept familiarity .02 .00 < 1 

Discussion 

Correlated features predicted performance on the verifi- 
cation task, but not on the feature typicality rating task. 
Previous research by Barsalou (1987, 1989) had shown that 
features that are processed frequently, recently, or both as 
part of a concept are more likely to be accessible when the 
concept name is read or heard. In the present study, these 
factors corresponded to production frequency and rank, the 
individual features measures. Experiment 3A further estab- 
lished that the degree to which a feature is correlated with a 
concept's other features also affects its on-line accessibility. 
This is additional evidence that correlated features are cen- 
tral to the dynamics of computing semantic representations. 
Furthermore, the feature-based measures predicted verifica- 
tion latency better than they predicted typicality ratings, a 
difference that was presumably due to the processing re- 
quirements of the rating task that were not reflected by the 
independent variables (e.g., subjects keeping judgments in- 
ternaUy consistent by thinking back to previous ones). It 
was also interesting that concept familiarity predicted ver- 
ification latency but concept typicality predicted feature- 
typicality rating. It is not surprising that the familiarity 
measure predicted verification latency because familiarity 
(frequency) effects are ubiquitous in word recognition. 
However, the manner in which concept typicality might 
predict feature typicality is less obvious. The most plausible 
explanation appears to be a "halo effect" (Tversky & Kah- 
neman, 1974); given that it is possible for a number of 
factors to influence complex judgments, concept typicality 
may have influenced feature-typicality ratings by "leaking" 
into them. 

These results also relate to the notions of feature saliency, 
typicality, centrality, and diagnosticity. The frequency with 
which a feature is listed in a norming task (measured as 
production frequency or rank) has been taken to indicate 
saliency (Smith & Medin, 1981) or diagnosticity (Smith & 
Osherson, 1984). Smith and Medin defined a salient feature 
as one that has a substantial probability of occurring in 
instances of the concept. Smith and Osherson labeled a 
feature as diagnostic of a concept if using it to describe that 
concept (as in (red) apple) increases the probability that the 
resulting conjunctive concept is a good example of the base 
concept (i.e., a (red) apple is a better apple than is a (brown) 
one). The typicality ratings also seem to reflect feature 
saliency or diagnosticity because they are best predicted by 
the individual features measure. Medin and Shoben (1988) 
discussed the somewhat different case in which a feature 
might be listed equally often for two concepts in production 
norms, but might be central to one and not the other. A 
feature is central if it accepts little change, that is, if altering 
it causes a drastic change in how people view the concept. 
For example, Medin and Shoben found that the typicality 
rating for (square) cantaloupe as a cantaloupe was higher 
than for (square) basketball as a basketball. The notion 
of centrality may reflect the fact that altering a feature has 
repercussions for all those features that are correlated 
with it (or related to it). Thus, feature centrality may be 
determined in part by intercorrelational strength. If this 
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is true, the results of Experiment 3 demonstrate an empirical 
decoupling of feature centrality versus saliency (or 
diagnosticity). 

Finally, Billman (1989) and Billman and Knutson (1996) 
have demonstrated that a feature is better learned if it is part 
of a system of correlated features. In the model of Billman 
and Heit (1988), this benefit results from focused sampling, 
which is a control mechanism that boosts the salience of 
features that participate in a detected regularity. The effect 
of correlated features in Experiment 3A might be viewed as 
resulting from years of focused sampling; features that were 
correlated with a number of others were activated more 
quickly. However, the simulation of Experiment 3 presented 
next shows this boost of activation without focused sam- 
piing during the learning phase. 

The goal of Experiments 2 and 3 was to study the repre- 
sentation and processing of established adult lexical con- 
cepts. This goal led to their main strength and weakness. 
The main strength of these experiments was that the feature 
norms enabled the investigation of the influence of well- 
learned statistical knowledge of features and the correla- 
tions among them. This type of investigation of lexical 
concepts would be very difficult to conduct using artificial 
concepts. In fact, no researcher has attempted an artificial 
concepts study that would involve the type of intensive 
training of subjects that would enable them to encode 
knowledge of this sort from observation and to compute it 
automatically from linguistic input. On the other hand, the 
main weakness of studying established lexical concepts is 
that it demands a correlational approach because it is not 
possible to directly manipulate the input to subjects, as it is 
with artificial concepts. A number of artificial concepts 
experiments have found that people can encode and use 
knowledge of feature correlations, particularly in observa- 
tional learning situations (e.g., Billman & Knutson, 1996; 
Wattenmaker, 1991, 1993; Younger and Cohen, 1983; but 
also see Murphy & Wisniewski, 1989, and Wattenmaker, 
1993, for failures). Thus, the essence of the present results 
have been replicated in a number of concept formation 
studies. 

A M O D E L  OF C O M P U T I N G  W O R D  M E A N I N G  
FROM W O R D  FORM 

The remainder of the article describes a connectionist 
model of computing word meaning from word form. Few 
studies in cognitive psychology have investigated aspects of 
cognitive representations more complex than simple lists of 
features because of the difficulty in intuitively predicting 
the interactions between complex representations and pro- 
cesses. Simply, our intuitions about the behavior of com- 
plex, interactive, and nonlinear systems are often wrong, 
making it critical to have a computational model of the 
process under study. We have claimed throughout that a 
distributed model of semantic memory would show effects 
of correlated features in tasks that tap the time course of 
computing word meaning and described it in general terms 
on page 101. The goal of the modeling was to demonstrate 
this claim explicitly for Experiments 2 and 3. The goal was 

not to advance a comprehensive theory of lexical conceptual 
memory; indeed, that does not seem possible given the 
present state of knowledge in this area. Rather, the model 
served as a vehicle to explicitly investigate the influence of 
correlated features on computing word meaning. 

The model is a Hopfield network (1982, 1984) and be- 
longs to a class of connectionist architectures in which a 
correlational learning algorithm encodes covariations 
among features that then form the basis for processing. The 
network represented concepts as distributed patterns of ac- 
tivation over units that corresponded to features from the 
Experiment 1 norms. Thus, the Hebb (1949) learning rule 
encoded information about how the features were correlated 
in the set of concepts that the model learned. This knowl- 
edge of feature correlations was then a major influence in 
determining the number of iterations required for the net- 
work to converge. Given these relatively transparent com- 
putational principles, it was felt that a Hopfield network 
would serve as an aid to understanding how correlated 
features might influence the computation of lexical concepts 
and, hence, people's performance on speeded semantic 
tasks. 

A number of previous models of word recognition are 
related to this one. For example, Hinton and Shallice (1991) 
used an iterative backpropagation network in which there 
was a standard feedforward path from orthography to se- 
mantics through a set of hidden units, plus a loop from 
semantics through a set of hidden units and back. Basins of 
attraction were formed in the latter part of the network. 
Although iterative backpropagation networks can store 
more patterns, we used a Hopfield network because it is 
based on a simple correlational learning rule (Hebb, 1949). 
Therefore, if concepts are represented as distributed patterns 
over units corresponding to individual features, feature cor- 
relations are stored in a transparent manner. In contrast, 
because there was a layer of hidden units in the semantic 
loop of Hinton and Shallice's network, and because back- 
propagation was the learning algorithm, correlational struc- 
ture was encoded in an indirect manner. Our model also 
differed from previous ones in that the representation of 
word meaning was based on empirically derived conceptual 
representations (the norms of Experiment 1). In previous 
models, concepts have been represented either by hand- 
crafted sets of features (e.g., Hinton & Shallice, 1991) or by 
random patterns of activation (e.g., Farah & McClelland, 
1991; Kawamoto, 1993; Masson, 1995). This difference 
was critical because the goal was to investigate the effects 
of the distribution of features across concepts. 

Network Architecture 

Figure 3 shows the model's architecture. A representation 
of word form was constructed by using one unit per letter 
triple that occurred in the 84 words that were included in the 
model; spaces at the beginning and end of a word were 
treated as characters. This resulted in 379 word-form units 
and provided a sparse distributed representation that 
roughly preserved item similarity. Because of the lack of 
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Wjk = Wkj Representations for the Model  

Xj Semantic  Units 

W o r d - F o r m  Units  

The individual and correlated features representations de- 
scribed in Experiment 1 were used for Experiments 2 and 3 
to choose items and predict dependent measures. However, 
the patterns of correlated features may have differed be- 
tween the subset of 84 concepts on which the model was 
trained and the full set of 190 concepts. Because these 
patterns were of primary interest, separate representations 
were constructed and used to predict the behavior of the 
model. When correlations were computed among the 120 
features possessed by a minimum of 3 concepts, 539 sig- 
nificantly correlated feature pairs resulted. Thus, concepts 
were represented across 646 individual features and 539 
correlated feature pairs. These representations were used to 
test hypotheses in the simulations of Experiments 2 and 3. 
Our approach was to demonstrate that the influence of 
individual and correlated features on the model's behavior 
was analogous to their influence on human performance. 

Figure 3. Basic architecture of the model (not all units are 
shown). The semantic units were fully bidirectionally intercon- 
nectext. The orthographic units were unidirectionally connected to 
the semantic units and were not interconnected. 

regularity in the mapping from word form to meaning, it 
was important that no systematic relationship existed be- 
tween the input unit triples and specific features (i.e., the 
semantic units). An informal analysis suggested that this 
was the case. 

The output was a distributed representation of word 
meaning. Each of the 646 units corresponded to a binary 
semantic feature (0 = feature is absent, 1 = feature is 
present); no production frequency information was in- 
cluded. Eighty-four of the 190 normed concepts were then 
represented as distributed patterns over the 646 feature 
units. The 84 concepts are shown with an asterisk (*) next 
to them in Appendix A. There were 10 birds, 10 mammals, 
8 fruit, 10 vegetables, 8 articles of clothing, 6 pieces of 
furniture, 8 kitchen items, 8 tools, 8 vehicles, and 8 weap- 
ons. The 84 items included 42 prime-target pairs from 
Experiment 2 and 14 target features from Experiment 3. 
Only 84 of the 190 concepts were included in the model for 
computational reasons; because of the simplicity of the 
learning rule, Hopfield networks have limited storage ca- 
pacity (Hertz, Krogh, & Palmer, 1991; Hopfield, 1982, 
1984). Our sole criteria for choosing the concepts was that 
each category was sampled approximately equally. The four 
living-thing categories were slightly overrepresented to bal- 
ance the six artifact categories. 

The semantic units were fully bidirectionally intercon- 
nected to allow the entire range of pairwise feature corre- 
lations to be encoded. The word-form units were fully 
unidirectionally connected to the semantic units, but were 
not interconnected. Pattern processing, the learning algo- 
rithm, and initial performance analyses are described in 
Appendix B. 

Simulation of  Experiment  2 

The model was not used to simulate similarity ratings 
because a number of factors outside of its realm influence 
these judgments. Furthermore, the fact that similarity in 
terms of individual features contributes to similarity ratings 
was built into the model. 

Short SOA priming can be conceptualized in terms of 
interconcept distance in semantic space. Computing word 
meaning is then viewed as moving from the representational 
state immediately prior to reading or hearing a word to the 
state that corresponds to its meaning. In short SOA priming, 
the prime determines the initial state for computing the 
target. Simulations were straightforward because of the 
network's temporal dynamics and sensitivity to featural 
similarity. Because a word's meaning is computed in 100- 
300 ms (Gough & Cosky, 1977; Rayner, 1978), the 250-ms 
SOA of Experiment 2 was assumed to be sufficient to allow 
a stable semantic pattern to be computed for the prime. 
Therefore, the prime's word form was clamped, and its 
meaning was computed for 10 iterations. With the prime 
active, the target's word form was clamped, and conver- 
gence latency was recorded. It is clear that similarity in 
terms of individual features partly determines amount of 
priming because converge latency depends on the difference 
between the initial and end states. In addition, an influence 
of correlated features may be detected because the weights 
directly reflect them. Returning to the sink analogy, simi- 
larity over individual features determines where the com- 
putation originates, that is, the distance from the prime to 
the target's basin of attraction. Feature correlations deter- 
mine the time required to descend a concept's attractor 
basin to its stable state. Thus, both factors may influence 
priming. Furthermore, as with the human subjects in Exper- 
iment 2A, the influence of correlated features may be more 
pronounced for living things than for artifacts because the 
features of living things tend to be more densely 
intercorrelated. 
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To test these hypotheses, the number of iterations re- 
quired for each target concept to converge was recorded 
when the target was preceded by a similar and a dissimilar 
prime (a concept that shared no features with the target). 
Measuring convergence is not straightforward because of 
the ambiguity in estimating when a concept is stable enough 
to support a semantic decision. Therefore, three conver- 
gence measures were used: When error dropped below 1.0, 
when error was within 0.1 of its value when the concept 
stabilized, and when error was within 0.01 of the stabiliza- 
tion point. The convergence measures were averaged over 
three runs. It was assumed that convergence latency for a 
concept was monotonically related to the time required for 
a subject to compute a word's meaning and was therefore 
monotonically related to how quickly and easily a subject 
could answer a question based on its meaning. Only 40 of 
the 42 priming pairs were used because the model did not 
possess sufficient computational resources to learn all 84 
patterns (see Appendix B). 

The regression analyses were identical to Experiment 2A. 
The dependent variable was the number of iterations for 
error to drop below the specified point when the target 
concept was preceded by a similar prime (e.g., lamp- 
chandelier). Convergence latency when preceded by a dis- 
similar prime (e.g., goose-chandelier) was the first factor 
forced into the regression equation. Similarity in terms of 
individual features was then used as a predictor. Similarity 
in terms of correlated features was used to predict priming 
effects after similarity in terms of individual features had 
been entered. As in Experiment 2A, similarity in terms of 
individual features predicted priming effects for artifacts: 
error less than 1, r 2 = .27, F(1, 19) = 7.07, p < .02; error 
within 0.1 of convergence, r 2 = .59, F(1, 19) = 27.07,p < 
.001; error within 0.01 of convergence, r 2 = .58, F(1, 19) = 
26.17, p < .001; but not for living things: less than 1, r 2 - 
.07, F(1, 15) = 1.14, p > .3; within 0.1, r 2 = .04, F < ~; 
within 0.01, r 2 = .01, F < 1. Conversely, similarity in terms 
of correlated features predicted priming effects for living 
things: less than 1, r 2 = .09, F(1, 14) = 1.39,p > .2; within 
0.1, r 2 = .26, F(1, 14) = 4.86, p < .05; within 0.01, r 2 = 
.25, F (1, 14) = 4.69, p < .05; but not for artifacts: less than 
1, r 2 = .02, F < 1; within 0.1, r 2 = .14 in the wrong 
direction; within 0.01, r 2 = .00, F < 1. 

A great deal of research in the past 20 years has dealt with 
explicating the informational bases of automatic semantic 
priming (Neely, 1991). Experiment 2A and its simulation 
demonstrate that one primary source is featural similarity. 
However, there are other bases as well. For example, auto- 
matic priming occurs for items that co-occur in real-world 
and linguistic contexts, such as butter and kn/fe, conceptual 
associates, such as dove and peace, and concepts that are 
part of a phrase or are frequently temporally contiguous in 
conversation or text, such as private and property. There are 
two ways in which these types of priming could be captured 
in an attractor network. First, pattern similarity may depend 
somewhat on shared context in that context may be encoded 
as an aspect of conceptual representation (Masson, 1995). In 
fact, some of the features listed by subjects in Experiment 1 
were contextual in nature (e.g., (used for carpentry), (found 

in bathrooms)). Second, Plaut (1995) has recently demon- 
strated that attractor networks are sensitive to sequential 
processing of patterns and that this sensitivity produces 
priming effects. Masson and Plaut have also shown that 
attractor networks can reproduce a variety of other priming 
phenomena, such as greater priming for low frequency and 
degraded targets, and significant priming across an inter- 
leaved unrelated item (bread-tree-butter). The fact that 
these networks can reproduce the primary empirical phe- 
nomena associated with automatic semantic priming makes 
them competitors of spreading activation (McNamara, 
1992) and compound cue (Ratcliff & McKoon, 1988) the- 
ories. Further discussion of the relative merits of these 
theories can be found in Masson (1995). 

Simulation of  Experiment  3 

The major determinant of feature verification latency was 
the strength with which the target feature was correlated 
with the other features of the concept. In contrast, the major 
predictor of feature typicality ratings was production fre- 
quency, an individual features measure. In the model, pro- 
duction frequency (feature saliency) was automatically 
equated because a binary representation was used and all 
concepts were trained to an equal extent. Thus, the goal of 
the simulation was to demonstrate that the influence of 
intercorrelational strength on the activation of a target fea- 
ture peaked early, then tailed off as a concept was being 
computed. It was assumed that the activation of a feature 
during the computation of a concept is monotonically re- 
lated to verification latency. Furthermore, asymptotic acti- 
vation might be monotonically related to feature typicality 
rating, although this relationship is less clear because of the 
greater number of intervening processes. 

The model contained 14 items from Experiment 3 that 
differed in terms of the strength with which the target 
feature was correlated with other features of the concept, 
strong (M = 163, SE = 16), weak (M = 37, SE = 9), 
t(13) = 7.60, p < .0001. These groups of items were also 
roughly equated on three variables: production frequency, 
strong (M = 12, SE = 2), weak (M = 12, SE = 2), t(13) = 
0; concept familiarity: strong (M = 5.4, SE = 0.2), weak 
(M = 5.0, SE = 0.3), t(13) = 1.35, p > .2; and number of 
individual features listed per concept: strong (M = 18, SE = 
1), weak (M = 17, SE = 1), t(13) = 1.68, p > .1. In 
analyses restricted to these 14 items, human subjects veri- 
fied strongly intercorrelated target features more quickly, 
t2(13) = 7.60, p < .001, and rated them as more typical, 
t2(13 ) = 2.13, p < .05. 

For the simulation, the word form of the 28 concepts was 
clamped, and the concepts were allowed to converge for 10 
iterations. Activation of the target feature was recorded at 
each iteration. Five runs with independent random starting 
configurations were used. A two-way, repeated-measures 
ANOVA was conducted with target feature activation as the 
dependent variable and intercorrelational strength (strong 
vs. weak) and iteration (1-10) as the independent variables. 
An interaction between intercorrelational strength and iter- 
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ation showed that the influence of correlated features 
changed over time, F(1, 13) = 10.28, p < .008. Simple 
main effects revealed that target features associated with 
concepts from the strongly intercorrelated group were not 
significantly more activated after Iteration 1; the first iter- 
ation was unaffected by correlated features because the 
activation in the conceptual units was random prior to it. 
Strongly intercorrelated target features were significantly 
more activated after Iterations 2-5 (p < .05). This advan- 
tage was marginal for Iterations 6-10 (.06 < p < .1). 
Intercorrelational strength was also used to predict target 
feature activation at each iteration. The correlation was 
nonsignificant for Iteration 1. Predictions were significant 
for Iterations 2-5, peaking at Iteration 3 (r 2 = .37, p < 
.001). However, the correlation between intercorrelational 
strength and target-feature activation tailed off and was 
nonsignificant for Iterations 6-10. Thus, the influence of 
correlated features on the time course of feature activation 
roughly corresponded to the results of Experiment 3. 

Discussion 

A number of recent articles have been aimed at develop- 
ing a theory of lexical memory based on attractor networks. 
This approach exemplifies general computational principles 
that have been outlined by McClelland (1991, 1993). Plaut, 
McClelland, Seidenberg, and Patterson (1996) applied them 
to lexical processing in stating that "processing is graded, 
random, adaptive, interactive, and nonlinear, and that rep- 
resentation and knowledge are distributed..,  these princi- 
ples lead to a view in which the reading system learns 
gradually to be sensitive to the statistical structure among 
orthographic, phonological, and semantic representations, 
and that these representations simultaneously constrain each 
other in interpreting a given input" (p. 56). Evidence for this 
view is mounting. Plaut et al. have detailed an attractor- 
network account of the pronunciation of printed words and 
nonwords. Masson (1995) and Plant (1995) have shown that 
the major empirical phenomena associated with semantic 
priming can be qualitatively reproduced. Hinton and Shal- 
lice (1991), Plaut and Shallice (1993), and Plant et al. have 
demonstrated that attractor basins are critical to understand- 
ing the phenomena that characterize deep dyslexia. Further- 
more, Kawamoto (1993) has shown that the nonlinear dy- 
namics of attractor networks may be key to understanding 
lexical ambiguity resolution. The present modeling ad- 
vanced the understanding of lexical memory by demonstrat- 
ing that feature correlations may provide a basis for those 
nonlinear dynamics. 

A theory of lexical memory based on attractor networks is 
a major departure from the traditional view. Typically, the 
lexicon is conceptualized as a set of nodes, each of which 
corresponds to a single lexical item (e.g., Morton, 1969; 
Coltheart, Curtis, Atkins, & Hailer, 1993). Lexical access 
thus corresponds to activating the word's node in the ortho- 
graphic or phonological lexicon, Because this node is pre- 
sumed to contain a pointer to the word's meaning (i.e., 
meaning is directly addressable), the form of the mapping is 

irrelevant. In contrast, in a distributed attractor network, the 
lexicon is a set of attractor basins, with each lexical item 
corresponding to a stable state in orthographic, phonologi- 
cal, and semantic space. In this system, the form of the 
mappings between orthography, phonology, and semantics 
is crucial. Indeed, the arbitrary nature of the mapping from 
word form to meaning has caused some researchers to 
suggest that it cannot be accomplished in a distributed 
network (e.g., Forster, 1994). However, the research pre- 
sented herein demonstrates that the required structure is 
present in the form of correlated features. 

Although most people find it easy to generalize a quasi- 
regular mapping (e.g., pronouncing "nust"), it is not clear 
whether or how generalization might proceed for a mapping 
that is basically arbitrary (e.g., the meaning of "nust"?). 
Insight might be gained by considering Plaut et al.'s (1996) 
analysis of how their network named nonwords. They found 
that nonword naming depended on subattractors that corre- 
sponded to units smaller than the patterns on which it was 
trained (i.e., letters, letter pairs, etc.). Furthermore, the at- 
tractor basins associated with exception words (e.g., some) 
were less componential in structure than those associated 
with regular words (e.g., seed) because correct exception 
pronunciation typically depends on the entire word. Thus, 
because the mapping from word form to meaning is gener- 
ally arbitrary for monomorphemic words, little or no attrac- 
tor substructure would exist to support generalization. To 
test the network's generalization to nonwords, the word- 
form representations of 10 nonwords (abbome, zultur, 
keplet, freater, shamp, nector, limp, eaple, toasten, cucum- 
der) were clamped, and each was allowed to iterate 25 
times. Few or no features were activated greater than 0.5 by 
these nonwords. This result coheres with the observation 
that English people seldom if ever generalize the word- 
form-to-meaning mapping. Rather, semantic generalizations 
typically depend on inferences based on correlated features, 
that is, they depend on knowledge within the semantic 
domain. For example, given solely the information that 
something (has four legs), people can easily provide other 
features that it might posses. Similarly, the model exhibited 
this type of generalization, performing pattern completion 
based on correlated features (see Appendix B). In summary, 
the present modeling contributed to the ongoing develop- 
ment of an attractor network theory of lexical representation 
and processing. 

GENERAL DISCUSSION 

The purpose of the empirical and modeling work de- 
scribed above was to examine the role of featural represen- 
tations in the processing of word meaning. The work ad- 
dressed three general issues: the relevance of featural 
representations to different types of semantic tasks; the 
nature of featural representations, focusing on the way in 
which feature correlations might be learned and what their 
subsequent role in word recognition might be; and the 
organization of semantic memory, with particular emphasis 
on defining semantic relatedness and specifying the source 
of automatic semantic priming. Experiment 1 provided a 
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large set of feature norms that was used to construct seman- 
tic representations in terms of individual and correlated 
features. These representations were used to create stimuli 
and to predict performance in Experiments 2 and 3. Exper- 
iment 2 contrasted a speeded task in which no overt judg- 
ment of similarity was required (automatic semantic prim- 
ing) with an untimed similarity-rating task. Similarity in 
terms of individual features predicted priming effects for 
artifacts but not for living things, whereas similarity in 
terms of correlated feature pairs predicted priming effects 
for living things but not for artifacts. For the untimed task, 
individual features predicted similarity ratings for both ar- 
tifacts and living things, although the predictions were not 
as good for living things due to the role that knowledge of 
biological origin played in subjects' ratings. Correlated fea- 
tures did not predict similarity ratings for either type of 
concept. Experiment 3 also contrasted a speeded task (fea- 
ture verification) with an untimed rating task (feature typi- 
cality rating), and the results corresponded to those of 
Experiment 2. Intercorrelational density of features, the 
correlated features measure, was the primary predictor of 
feature verification latency but did not predict feature typ- 
icality. The individual features measures (production fre- 
quency and ranked production frequency) predicted both 
verification latency and typicality rating. 

Experiments 2 and 3 support the notion that, as in an 
attractor network of lexical processing, correlations among 
semantic features play a central role in the dynamics of 
computing word meaning. To illustrate this, a Hopfield 
(1982, 1984) network was implemented in which word form 
units were unidirectionally connected to semantic feature 
units that were fully interconnected to allow correlations to 
be encoded between each pair of features. The word-form- 
to-semantic connections functioned to put the network in a 
representational state within the word's semantic basin of 
attraction, whereas the semantic interconnections deter- 
mined the rate of convergence from that point. The model 
simulated the priming results of Experiment 2 in that the 
same factors that predicted human performance also pre- 
dicted the model's performance. A simulation of Experi- 
ment 3 showed that the influence of correlated features on 
the activation level of a target feature peaked and then tailed 
off during the computation of a concept. This pattern mim- 
icked the human data in which feature correlations influ- 
enced the speeded but not the untimed task. 

There were five main contributions of this work. First, the 
roles of featural representations and higher level knowledge 
in semantic tasks were integrated by carefully considering 
task demands. Second, a number of researchers had claimed 
that correlated features are a key to understanding semantic 
representation (e.g., Malt & Smith, 1984), but this was the 
first clear demonstration of their effects on tasks involving 
real-world concepts. Third, the model suggested a novel 
way of viewing how correlated features are learned and 
used in lexical processing. Fourth, recent studies had sug- 
gested that featural similarity was irrelevant to semantic 
relatedness and automatic priming (Moss et al., 1995; Shel- 
ton & Martin, 1992). However, featural similarity predicted 
item-by-item priming effects, suggesting that it is an impor- 

tant organizing principle of semantic memory. Finally, pre- 
vious research had suggested that correlated features are 
more prominent in the representation of living things than of 
artifacts (e.g., Barrett, Abdi, Murphy, & Gallagher, 1993; 
Gelman, 1988), and the analyses on the norms and the 
priming experiment provided further evidence for this 
claim. In addition, the network dissociated living things 
from artifacts on this basis without the need for qualitatively 
different representations. 

One challenge in this research was to find appropriately 
yoked pairs of slow and fast tasks. Experiment 2 used two 
tasks that tap the similarity of lexical concepts: Automatic 
semantic priming reflects similarity but subjects are not 
required to judge it, whereas a conscious judgment is the 
crux of the similarity rating task. Experiment 3 used two 
tasks that tap the relationship between a concept and its 
features: Feature verification involves quickly deciding 
whether a feature is part of a concept, and feature-typicality 
rating involves specifying how typical it is of that concept. 
The experiments showed that these tasks differ on more 
than simply the speed with which they are performed; 
specifically, the extra time for the untimed tasks allowed for 
additional processes to intervene between the computation 
of word meaning and the decision, thus decreasing the 
predictive ability of correlated features. It might be possible 
in future research to use tasks that are even more tightly 
yoked than those of Experiments 2 and 3. For instance, one 
possibility is to compare short and long SOA conditions in 
a priming task. With a long SOA, subjects might generate 
an expectancy set to the prime and base their decisions to 
the target largely on this set (Neely, 1991). Although the 
decision would still be fast, the reliance on the expectancy 
set might dampen effects of correlated features. Manipulat- 
ing the SOA between the concept and feature names in the 
verification task might show analogous effects. A third 
possibility might be to use short and long deadline condi- 
tions in a same-different category decision task, analogous 
to Goldstone's (1992) work. This task would consist of 
providing subjects with a number of superordinate category 
names prior to a block of trials. Each trial would consist of 
two concept names (e.g., dog cat or dog chair), and the 
subjects' task would be to indicate whether or not they come 
from the same superordinate category. The hypothesis in 
this case would be that the extra time allowed by the long 
deadline would allow for additional processing that would 
dampen the influence of correlated features. These and other 
possibilities are currently being explored in the laboratory 
of the first author. 

Semantic Impairments in Alzheimer 's  Dementia 

There has been a considerable amount of research on 
impairments to lexical semantic representations that occur 
as a consequence of brain injury (e.g., stroke) or disease 
(e.g., herpes encephalitis; Alzheimer's disease [AD]); see 
Shallice (1988) for a review. One attraction of connectionist 
models is that they can provide a unified account of normal 
skilled performance and neuropsychological impairments 
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(see Plant & Shallice, 1993; Plant et al., 1996; Farah & 
McClelland, 1991, for examples of this approach). Our 
account of semantic priming effects has emphasized the 
importance of correlated and individual features and how 
their distributions differ across living-thing and artifact cat- 
egories. Devlin et al. (1996) have recently examined impli- 
cations of this theoretical claim about the organization of 
semantic memory with regard to the phenomenon of 
category-specific impairments. Several well-documented 
case studies have established that certain types of neuropa- 
thology (e.g., herpes encephalitis) sometimes result in se- 
lective impairment of biological kind or artifact categories 
(see Saffran & Schwartz, 1994, for review). These patterns 
of impairment have been explained in terms of predominant 
damage to a specific type of feature: perceptual in the case 
of biological kinds, functional in the case of artifacts (Farah 
& McCleUand, 1991). Perceptual features are assumed to be 
stored in temporolimbic areas, whereas functional features 
are stored in frontoparietal regions. Damage localized to 
either region preferentially disrupts the semantic informa- 
tion in that region resulting in a category-specific impair- 
ment. This kind of localized damage is compatible with 
forms of neuropathology, such as herpes encephalitis, that 
are localized to specific brain regions. However, category- 
specific impairments have also been observed in patients 
with AD, a pathology of widespread, patchy damage affect- 
ing both temporolimbic and frontoparietal regions (Gonner- 
man, Andersen, Devlin, Kempler, & Seidenberg, in press; 
Silveri & Gainotti, 1988). This type of neuropathology 
cannot be equated with damage to particular types of units 
in a connectionist network. Devlin et al. have provided an 
account of category-specific impairments in AD using a 
model much like the one described earlier. The pathology 
associated with AD was simulated by progressively elimi- 
nating random connections between units. Devlin et al. have 
found biological and artifact categories behaved very dif- 
ferently under this type of damage. The decline in perfor- 
mance on items drawn from biological categories was a 
nonlinear function of the number of damaged connections. 
Biological categories withstood the effects of small amounts 
of damage better than artifacts; however, with additional 
damage, performance on biological categories degenerated 
in an abrupt, catastrophic manner, whereas the decrement in 
performance on artifacts was more gradual. Devlin et al. 
also have reported data from a large number of patients with 
AD consistent with this pattern. Patients with mild damage 
showed a small advantage for artifacts compared to biolog- 
ical kinds; with more severe degrees of impairment, biolog- 
ical kinds showed much more impairment than artifacts. 

Devlin et al.'s (1996) account of these data implicates 
differences in the density of correlated features across the 
types of categories. The greater number of correlated fea- 
tures among the biological kinds initially tends to protect 
them from small amounts of damage. These categories can 
tolerate the loss of small numbers of connections because of 
strong correlations between features. Sufficient amounts of 
damage, however, result in the loss of some of these fea- 
tures, which contributes to impaired performance on many 
exemplars of a category simultaneously. In artifact catego- 

des, exemplars seem to be damaged on an item-by-item 
basis, as the neuropathology begins to affect features that 
happen to be critical to particular items but not highly 
correlated with other features. 

Devlin et al.'s (1996) research suggests that the theoret- 
ical analysis of featural representations of meaning that we 
have proposed can also account for some phenomena con- 
ceming the time course of the effects of progressive de- 
menting disease. The explanatory value of a theoretical 
approach greatly increases when the same principles (in this 
case, about lexical representation) can be used to explain 
very different kinds of behavioral phenomena. A second 
point is that these assumptions about lexical representation 
are compatible with effects of different types of neuropa- 
thology. Damaging a bank of units is different from pro- 
gressively eliminating connections between units. The 
former provides a way to investigate effects of localized 
brain damage, the latter the diffuse effects of AD. Devlin et 
al. showed that these types of damage give rise to different 
profiles of impaired performance that correspond well to the 
behaviors seen in different types of patients. Although this 
research only addresses a.narrow range of behavioral im- 
pairments, it suggests that it should be possible to use 
models of normal performance to account for effects of 
different types of neuropathology. 

Correlations Versus Relations 

In Experiments 2 and 3, knowledge of correlated features 
influenced early processing, whereas later processing was 
dominated by individual features. Paradoxically, Goldstone 
(1992) and Ratcliff and McKoon (1989) have found that 
subjects base decisions on individual features when they are 
hurried, whereas they use relational information only when 
given sufficient time to process the stimuli. This inconsis- 
tency is easily resolved, however, by contrasting the type of 
information used in each case. For example, in Goldstone's 
experiments, subjects judged the similarity of visually pre- 
sented scenes. Relational information was used to derive a 
common orientation between scenes before performing a 
feature-by-feature comparison. Thus, the relational informa- 
tion was novel and had to be computed anew on-line. On the 
other hand, in the present research, no new relational infor- 
mation was required to perform the priming or verification 
tasks. Unlike the studies of Goldstone and McKoon and 
Ratcliff, the correlational knowledge consisted of estab- 
lished statistical information about the distribution of fea- 
tures of common lexical concepts. The fact that it influenced 
early processing can be taken as evidence for the view that 
this knowledge is inherent to the mechanism that computes 
word meaning. 

Conceptual Development 

The attractor network described earlier continues a tradi- 
tion of theories and models that have emphasized the im- 
portance of capturing predictive structure in the environ- 
ment as a primary means of learning concepts and 
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categories (Anderson, 1991; Brunswick, 1955; Clapper & 
Bower, 1991; Rosch, 1978). For example, Billman and Heit 
(1988) have described a model that is similar to ours in 
which the learning of feature correlations is a central pro- 
cess of conceptual development. Furthermore, their models 
stress that these correlations are learned from observation. 
Their models differ, however, in that they deal with explicit 
learning of feature correlations; they are framed in terms of 
learning correlational rules. In contrast, using an attractor 
network as a metaphor for learning implies that much of a 
person's knowledge of correlated features is of an implicit 
nature; children automatically learn feature correlations that 
then directly influence conceptual processing. 

The explicit-implicit dimension is relevant to treatments 
of correlated features and has played a role throughout this 
article. Recent claims made by Holyoak and Spellman 
(1993) concerning implicit learning imply that a consider- 
able amount of people's knowledge of correlated features 
may be implicit. They claimed that implicit knowledge 
often takes the form of covariations in the environment and 
that people learn these covariations by exposure to stimuli 
exhibiting them, often without intention or awareness. 
Holyoak and Spellman also noted that connectionist models 
are particularly well suited for encoding and using this type 
of knowledge. Strongly opposing this view, however, are 
Medin, Wattenmaker, and Hampson (1987) and Murphy 
and Wisniewski (1989), who have claimed that a correlation 
between two features cannot be learned unless a prior the- 
oretical relation exists between them. The human data are 
somewhat equivocal on this matter. Experiments such as 
Billman (1989), Billman and Knutson (1996), and Wald- 
mann et al. (1995) have found evidence in adults for statis- 
tical learning of feature correlations without prior theories 
linking the features. In addition, Younger and Cohen (1983) 
have shown that 10-month-old infants are sensitive to the 
distributional properties of features of novel animals. How- 
ever, failures have also been reported, such as Murphy and 
Wisniewski (1989) and Wattenmaker (1993). One factor 
that may have led to these failures is the lack of training 
time. Typically, in studies that have failed to find effects of 
correlated features, subjects are exposed to a relatively 
small number of novel stimuli for short durations. Thus, null 
effects may have resulted simply because subjects were not 
provided with sufficient opportunity to encode the requisite 
bottom-up knowledge. Furthermore, these studies often in- 
volve novel combinations of familiar features. If it is as- 
sumed that subjects enter these experiments possessing a 
great deal of knowledge about feature correlations, it is 
unclear how much training would be required to overturn 
this prior learning and rearrange their knowledge base so 
that it mirrored the distributional patterns in the experimen- 
tal training set. 

Finally, we believe that theories do play a role in concept 
learning or the learning of correlated features. It is easy to 
imagine that statistical knowledge and relational theories 
mutually facilitate conceptual development. On the one 
hand, although there may be a great deal of statistical 
knowledge of feature co-occurrence that is rarely brought to 
consciousness (Holyoak & Spellman, 1993), people are 

capable of doing so. For example, it is probable that few 
people consciously note the statistical correlation between 
(has fur) and (has a tail}. However, if it was brought to their 
attention, or they did consciously note it for whatever rea- 
son, it could trigger a search for, or form the basis of, a 
theory. On the other hand, being taught certain facts or 
theories might lead to increased attention to specific fea- 
tures or pairs of features, which would lead in turn to 
enhanced encoding of a statistical regularity through some 
mechanism such as focused sampling. Along these lines, 
Barrett et al. (1993) showed that a child's sensitivity to 
correlated features was modulated by whether the relation- 
ship made sense. Unfortunately, the learning aspect of our 
model did not include this interplay between theoretical and 
statistical knowledge, and it stands as a challenge for con- 
nectionists and symbolic modelers to extend models in this 
way. However, recent research has begun to deal with the 
relationships between statistical and theory-based knowl- 
edge in conceptual development (Wisniewski, 1995; 
Wisniewski &Medin, 1994), and this should continue to be 
an important topic of future research. 
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Appendix A 

The Stimuli of Experiments 1 and 2 

Prime-target pairs are grouped together on a line (e.g., bird-robin, eagle-hawk, duck-chicken, etc.). An asterisk (*) 
indicates pairs included in the model. 

Pr ime-Targe t  Pairs 

bird robin eagle* hawk* duck* chicken* 
emu ostrich vulture* buzzard* budgie* parakeet* 
stork crane starling crow canary* finch* 
goose turkey 
mammal pig caribou moose tiger* lion* 
goat sheep dog* cat* rat* mouse* 
whale dolphin horse* pony* cow* bull* 
deer fawn 
fruit apple orange grapefruit lemon* lime* 
cherry cranberry cantaloupe honeydew peach* nectarine* 
prune plum coconut* pineapple* raisin* grape* 
mandarin tangerine 
vegetable corn garlic onions cucumber* zucchini* 
broccoli cauliflower squash pumpkin carrot* celery* 
peas beans potato* yam* radish* beets* 
lettuce cabbage 
clothing socks nylons leotards shoes* boots* 
sandals slippers mittens gloves skirt* dress* 
tie belt pants* trousers* shirt* blouse* 
camisole bra 
furniture chair closet dresser couch* sofa* 
carpet mat shelves cupboard drapes* curtains* 
bureau desk cushion pillow lamp* chandelier* 
stereo radio 
kitchen stove mug cup saucer* plate* 
spoon fork faucet sink pot* pan* 
mixer blender microwave* toaster* fridge* freezer* 
bottle jar 
tool hammer screws bolts wrench* pliers* 
shed barn level ruler hoe* shovel* 
file sandpaper crayon* pencil* drill* screwdriver* 
vice clamp 
vehicle car tricycle bike truck* van* 
subway bus canoe raft scooter* motorcycle* 
wagon cart jet* airplane* ship* yacht* 
dunebuggy jeep 
weapon gun slingshot catapult pistol* rifle* 
dagger knife rock stone cannon* bazooka* 
axe tomahawk spear* sword* missile* bomb* 
club stick 

(Appendixes continue) 
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A p p e n d i x  B 

D e s c r i p t i o n  o f  the  M o d e l  

Dete rmin ing  Connec t ion  Weights  

The weights between semantic units were determined indepen- 
dently of the weights connecting the word form to the semantic 
units. Training for each component was accomplished using a 
single-batch matrix multiplication rather than iteratively training 
on each pattern. That is, the network was trained in a single 
step rather than presenting patterns to the network one at a time 
until some learning criterion was met. Mathematically, the meth- 
ods are similar, with matrix multiplication being computationally 
preferable because it is faster. However, a model trained in this 
way does not provide information about the time course of 
learning. 

All concepts were equally familiar to the model because each 
was used once when the weights were determined. The semantic 
¢:> semantic weights were set using the Hopfield (1982, 1984) 
learning rule, slightly modified to be optimal for sparse patterns 
(Tsodyks & Feigelman, 1988). The learning rule was (using the 
symbols from Figure 3) 

Wjk = l l n s~[ (X jp  -- mp)(Xkp -- rap)], (B1) 
P 

where Wjk represented the weight of the connection between unitj 
and unit k (connections were symmetric, Wjk = Wk), n s was the 
number of semantic units (646), and Xjp represented the presence 
(1) or absence (0) of f~ tu re j  in eonoep~. The term mp was the 
number of features possessed by eonoep~ expressed as a propor- 
tion of the total number of features, that is, the number of features 
in eoneeptp divided by 646. Including this term has two advan- 
tages. First, it increases storage capacity (Tsodyks & Feigelman). 
This is important because we wanted to train the network on as 
many patterns as possible to give it exposure to features that 
co-occur across concepts. Second, as with the Pearson product 
measure (r) used for the correlated features representation, this 
learning rule is sensitive to the fact that concepts are extremely 
sparse in semantic space as defined by individual features. For 
example, in the model, eagle possessed 17 of 646 features, a 
proportion of .026. If two eagle features were present (e.g., (has 
wings) and (flies)), their connection was strengthened by (1 - 
.026)(1 - .026) = 0.948. If two features were absent (e.g., (made 
of wood) and (has a handle)), their connection was strengthened by 
(0 - .026)(0 - .026) = 0.0007. Finally, the connection between 
a present and an absent feature (e.g., (has wings) and (has a 
handle)) was strengthened in the negative direction by an interme- 
diate quantity, (1 - .026)(0 - .026) = -0.0256. This learning rule 
captures the following intuition. Because a concept possesses so 
few features in relation to the vast number of possible features in 
the world, the absence of a feature generally carries little or no 
information. For example, when someone attends to a dog, she 
notices the features it possesses, but does not tend to notice ones 
it does not possess, such as (has a handle) or (has wheels). Tsodyks 
and Feigelman's learning rule correctly treats simultaneously 
present features as more important than simultaneously absent 
ones. Finally, it should be noted that the situation in which a dog 
is missing a typical dog feature is qualitatively different; if a dog 
does not have four legs, people do tend to notice (and so would the 
model, see below). 

The word form ~ semantic connections were computed using a 
similar Hebbian correlational learning rule (Hebb, 1949). 

zij = l l n , f ~ [  (aip)(Xjp - mp)] (B2) 
P 

The variable aip was the normalized word-form representation for 
uniti; normalization removed effects of word length. The variables 
Xip and mp were the same as in Equation 1, and nwf was the number 
of word-form units (379). Note that there were no zjt connections. 
A word-form pattern was represented by a 1 at each unit corre- 
sponding to a letter triple contained in the word, and zeroes 
elsewhere. Patterns were normalized to remove word-length bias 
according to the following equation: 

Xaip z = 4 for each concept v. (B3) 

Comput ing  a W o r d ' s  Featural  Representat ion 

The dynamics of unit activation were determined by 

xi(t  + 1) = g ( c l ~ ( z j i  × ai) + c2X(wji X xj(t)) - ~), (B4) 
J J - -  

where g(y)  = 0.5 tanh(c3y) + 0.5. 

The variable xi( 0 was the activation of unit i at time t. The variables 
a, z, and w were defined earlier. Synchronous updating was used 
for speed and ease of simulation, and there is no reason to expect 
qualitative differences with asynchronous updating. The following 
values were used for the simulations presented: c~ = 0.85, c 2 = 
0.33, ¢ = 0.0105, c 3 = 400, and g was a steep sigmoid; similar 
results were obtained with various combinations of values for the 
constants. The algorithm was not overly sensitive to the steepness 
of the sigmoid (given by c3), but a step function did not work (see 
next paragraph). 

To compute a concept, its word-form representation was used as 
input. Thus, it was assumed that preliminary visual or auditory 
analyses had resulted in an internalized distributed representation 
of the word's spelling or pronunciation. The network was initial- 
ized by setting 60 randomly chosen semantic units to .25. Because 
concepts activated an average of approximately 15 units, when 60 
units were set to .25, the total activation in the system was similar 
to its normal stable state. Given that activation began as random 
and close to zero, in the first iteration, activation of semantic units 
resulted primarily from word form and put the network into the 
correct basin of attraction. Further iterations resulted in a descent 
in semantic state space toward the lowest point of the basin, which 
corresponded to the learned concept. Thus, the sigmoidal activa- 
tion function performed better than the step function because it 
allowed semantic unit activation to accrue slowly, thereby increas- 
ing the degree of mutual facilitation among units. 

In summary, the model can be understood as a Hopfield (1982, 
1984) network with the word form ~ semantic connections acting 
as thresholds that were variable over units and patterns, and the 
semantic interconnections determining the general topology of the 
energy function, that is, which combinations of features were 
stable based on its experience with feature co-occurrence. Thus, 
the model embodied two important principles: It naturally learned 
how features co-occurred in the concepts on which it was trained, 
and it used this knowledge to drive the system to a stable state. 
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Performance Analyses 

The model successfully learned 82 of the 84 concepts on which 
it was trained; this was approximately the maximum number of 
concepts that could be learned by the network due to cross talk 
among concept vectors. After training, the network's retention of 
each concept was tested by randomly initializing 60 semantic units 
to a value of .25, then clamping the word-form representation and 
allowing the model to iterate ten times. Two performance mea- 
sures were recorded after each iteration: (a) error, the sum of 
squared error between the computed concept vector and the target 
vector; and (b) activated features, where a unit was counted as 
"on" if its activation was greater than .5, and "off" otherwise. 
Results were averaged over five runs, each of which used a new set 
of randomly chosen initial values for the semantic units. 

Figure B 1 shows a graph of the mean sum of squared error for 
the 84 concepts, as well as for crayon, the most slowly converging 
concept, and jet, a concept that converged, then activated a number 
of incorrect features. On average, error steadily decreased until 
Iteration 5, at which time it stabilized. That is, concepts tended to 
stabilize after five iterations, at which point the mean error was 
0.623. This error was quite low; by comparison, if the network had 
simply turned all units off, which might have been a reasonable 
solution given the sparsity of the patterns, the mean expected error 
would have been 16.2. The concepts crayon and je t  were interest- 
ing and contrasting cases. Because the features of crayon were 
sparsely intercorrelated, it was slow to converge. The concept jet, 
on the other hand, contained features that were densely intercor- 
related, so that its semantic representation converged quickly. 
However, the features of je t  were also highly correlated with a 
number of bird-like features so that although it converged quickly, 
error subsequently increased when some of them became activated 
((isa bird), (has feathers), (has a beak), and (eats)). 

In general, errors made by the network followed a similar 
pattern to jet. After 4 iterations, 10 features from 8 concepts were 
activated that were not part of those concepts according to the 
representations from Experiment 1 (i.e., how the network was 
trained). By 7 iterations, it had increased to 29 features from 16 
concepts, and was stable through 10 iterations. The 16 concepts for 
which additional features were activated contained features that 
were strongly correlated with one another. A measure called in- 
tercorrelational density was calculated as the sum of the percent- 
ages of variance shared by significantly correlated feature pairs 
within a concept; the mean intercorrelational density of the 16 
concepts (979) was much higher than the average of all 84 (579). 
The most interesting aspect of these "errors" of inclusion was that, 
for 14 of the 16 concepts, the model activated valid features, even 
though less than 5 of 30 subjects had listed those features in the 
norms. For example, according to the model, a budgie (has wings), 
a buzzard and an eagle (are animals), a chicken and a duck (are 
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Figure B1. Convergence patterns for the average of the 84 con- 
cepts, as well as crayon, the most slowly converging concept, and 
jet, which converged then activated additional features. 

large), a cannon (is dangerous), a carrot, a radish, and a zucchini 
(are edible), a carrot (has leaves), a hawk (eats), a mouse (has four 
legs), a missile (is loud), and trousers (are worn by women). 
However, although the model correctly believes that a canary is 
(an animal), it also thinks that it {is loud) and (is large). As well, 
for both je t  and cat, birdlike features were erroneously activated. 

In contrast, 12 concepts whose features were sparsely intercor- 
related (mean intercorrelational density = 135) were slow to 
converge because mutual activation among each concept's features 
was relatively weak. After 4 iterations, the activation of 62 features 
distributed across these 12 concepts remained erroneously below 
.5. After 7 iterations, 10 features of crayon remained activated 
below .5, as well as one feature of yam. After 10 iterations, only 
y a m ( i s  like a potato) remained incorrectly off. 

In summary, the model learned 82 of the 84 concepts to the 
point where, after 7-10 iterations, only a few feature units were 
activated that were not part of the representation as specified by 
the norms. Furthermore, these additional feature units were acti- 
vated because they were highly correlated with other features 
within the concept and were, for the most part, appropriate. This 
process of filling in additional information about a concept can be 
considered a form of inference and illustrates that the network is a 
pattern-completion device that relies on its knowledge of feature 
correlations. 

(Appe.ndixes continue) 
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A p p e n d i x  C 

T h e  S t imu l i  o f  E x p e r i m e n t  3: S t r o n g l y  and  W e a k l y  I n t e r c o r r e l a t e d  G r o u p s  

Feature Strong Weak 

come (comes) in different colours pants carpet 
eats parakeet whale 
found in bathrooms faucet mat 
found in kitchens microwave faucet 
has an engine motorcycle yacht 
has a handle tomahawk wagon 
has a long tail mouse pony 
has a seat tricycle chair 
has leaves lettuce pineapple 
has legs caribou canary 
has skin apple potato 
has teeth lion rat 
has wheels scooter cannon 
hunted by people deer ducks 
is (are) comfortable couch slippers 
Is (are) decorative drapes carpet 
is (are) transparent jar nylons 
is breakable plate crayon 
is colourful budgie carpet 
Is crunchy carrot apple 
is dangerous rifle motorcycle 
is electrical blender drill 
is fast car microwave 
is green lettuce lime 
is round peach cabbage 
is soft sofa carpet 
is sweet peach raisin 
is tropical coconut parakeet 
made of material pants couch 
made of plastic jar sandals 
migrates goose caribou 
used as a pet parakeet dog 
used as a weapon axe stick 
used for protection pistol dog 
used for transportation van raft 
used in the circus lion cannon 
worn for warmth gloves shirt 
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