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The major points in the Besner, Twilley, McCann, and Seergobin (1990) critique of the Seidenberg 
and McClelland (1989) model are addressed. The model's performance differs from that of people 
in ways that are predictable from an understanding of the limitations of the implementation. The 
principal limitations are the size of the training corpus and the phonological representation. The 
issue ofpscudohomophone effects is discussed, and Besner et al.'s new data are shown to be consistent 
with the Seidenberg and McClelland account oflexical decision. 

Besner, Twilley, McCann, and Seergobin's (1990) broad cri- 
tique of  the Seidenberg and McClelland (1989) model merits 
closer inspection; we think the model stands up quite well. The 
model correctly simulates a broad range of  behavioral phenom- 
ena; its performance departs from that of  people in ways that 
are predictable from an understanding of  limitations of  the im- 
plementation. These limitations do not call into question any 
of  the basic assumptions of  the model. 

Size o f  the  Tra in ing  C o r p u s  

Besner et al. (1990) noted that the model does not perform 
as well as people on nonwords. They are correct. People know 
more than the model. The principal difference between the 
model and people is that whereas people's vocabularies are on 
the order of  30,000 words, the model's vocabulary is 2,897. 
This factor limits nonword performance. The model's perfor- 
mance on any given word is largely determined by the number 
of  exposures to it during the training phase. There are also 
small effects due to neighbors sharing the same word body (e.g., 
GAVE/SAVE), as in the behavioral data we simulated. As the fre- 
quency of  exposure to a word decreases, dependence on the 
neighbors increases. In the l im i t - - a  nonword on which the 
model has not been t ra ined--performance is wholly deter- 
mined by the neighbors. Hence, the limit on the size of  the 
training corpus has a large effect on nonwords but very little 
effect on words. That is why our simulations focused on words. 

We examined the model 's performance on three sets of  non- 
words: those used by Glushko (1979, Experiment 2), those used 
by McCann and Besner (1987), and a set derived from the regu- 
lar and exception words used in the Taraban and McClelland 
(1987) study (see Seidenberg & McClelland, 1989, Figures 12- 
14). Besner et al. (1990) noted that the model performs poorly 
on the Glushko nonwords. The problem items are listed in Ta- 
ble 1. The first point to note is that there is an ambiguity in how 
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to score the data. Besner et al. scored responses such as 
KEAD ----/ked/as errors. However, in the training corpus, there 
are more neighbors in which -FAD is p ronounc e d / e d / t han  / 
Ed/. The model, then, was trained t h a t / k e d / i s  the regular pro- 
nunciation, which it produced correctly. There are three such 
items in the Glushko list. For another item, COMB, it is not clear 
what the regular pronunciation is. The four words in the -OMB 
neighborhood have three pronunciations (TOMS, at)MS, COMS, 
and WOMS); the model picked/Ore/ .  Excluding these items, the 
model made 13/52 errors (25%). ~ In contrast, the model made 
13/96 errors (13.5%) on the Taraban and McClelland (1987) 
nonwords and 66/160 errors (41.3%) on the McCann and Bes- 
her stimuli. Why performance differs so much across stimuli 
can be seen by examining how they relate to words in the train- 
ing set. For each nonword, we counted the number of  items in 
the corpus that have the same word body (e.g., for MARE, all 
the -AVE words). The Taraban and McClelland stimuli have the 
most neighbors (these are items like MAre and m~-r), and the 
McCann and Besner stimuli have the fewest (these are items like 
VAWX and FAUE). AS Figure 1 indicates, the model 's perfor- 
mance is related to the number of  neighbors. 

Our theory is that knowledge of  spelling-sound correspon- 
dences derived from exposure to words is used in naming non- 

J Besner, Twilley, McCann, and Seergobin (1990) reported higher er- 
ror rates in some of their simulations than we obtain using the same 
weights. The discrepancies probably relate to ambiguity concerning the 
correct pronunciations of nonwords such as PLOOD (Ghishko, 1979), 
THA (Campbell & Besner, 1981), and GOLPH (McCann & Besner, 1987). 
First, it is not clear what the "regular" pronunciation ofa nonword such 
as PLOOD is (like "good" or "food"?.); second, there are differences in 
accent (the model was trained in Seidenberg's accent, which appears to 
differ from the one Besner et al. used in scoring the data). It is also 
questionable whether the same criteria were used in scoring the subject 
and model data. McCann and Besner scored as correct any pronuncia- 
tion of a nonword that was consistent with the grapheme-phoneme cor- 
respondences given in the Hanna, Hanna, Hodges, and Rudoff(1966) 
list. The model's performance was assessed differently. Each nonword 
was assigned a single correct pronunciation, and Besner et al. deter- 
mined how often this pronunciation provided the best fit to the com- 
puted output. Thus, the criteria used in scoring the model's perfor- 
mance apparently were more stringent. 
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Table 1 

Errors on the Glushko (1979) Stimuli 

Item Target Model's response Comment 

kead kEd ked 
plood plUd plud 
tost t'st tOst 
gomb gore gOre 
beash bES bAS 
brean brEn brAn 
breat brEt bret 
broff br*f bruf 
gomp gomp gump 
pote pOt pit 
tife tIf tIv 
troad trOd trId 
kede kEd yEd 
kull k^l y^l 
kere kEr ZEr 
kulp k'lp N^lp 
pild pild pAid 
[35 others correct] 

Regular pronunciation 
Regular pronunciation 
Regular pronunciation 
Like comb 

feature 
feature 
feature 
feature 
feature 
feature 
feature 
feature 
features 
features 
features 
features 
features 

Note. The code used for representing phonemes is described in Seiden- 
berg and McClelland (1989, p. 528). 

words. Nonword performance therefore depends on vocabulary 
size. The model's performance reflects which words did or did 
not happen to be included in the training corpus. Given this 
theory of nonword naming, it would be anomalous if the 
model's performance did not differ from people's in the ob- 
served way. 

The remaining question is whether a sufficiently large train- 
ing corpus would allow the model to produce correct pronunci- 
ations for all nonwords, including ones such as PLAIE, DOWT, 
and TRUFE, which have no word-body neighbors. We cannot 
answer this question definitively without running a simulation, 
but the following points should be noted. For words, perfor- 
mance is primarily determined by frequency of  exposure to a 
word itself and secondarily determined by the word-body 
neighbors. For nonwords, the primary impact comes from the 
word-body neighbors; there are secondary effects due to more 
remote neighbors. The nonword SOAT, for example, is affected 
by the SOA- words as well as the -OAT words. The same is true 
with human subjects; whereas only the word-body neighbors 
have discernible effects on the pronunciation of  words, a much 
larger pool of  neighbors affects nonword pronunciation (e.g., 
Taraban & McClelland, 1987). Two implications follow. First, 
the model should be able to piece together the pronunciations 
of  nonwords such as TRUFE from exposure to the more remote 
neighbors. We already know this is true in some cases; the origi- 
nal simulation actually produced correct output for PLAIE, 
DOWT, and TRUFE and many other such nonwords. Second, lim- 
its on the size of  the training corpus penalize the model even 
more than the Figure 1 data suggest. Many of  the remote neigh- 
bors that will be relevant to stimuli such as McCann and Bes- 
ner's (1987) are not in the corpus, either. 

In summary, people are able to pronounce nonwords like 
DOWT on the basis of their knowledge of  words; the model per- 
forms similarly, within the restrictions of  the training corpus. It 

is important to understand the limits of  the current simulation; 
it is also important to ask how well a person would pronounce 
nonwords if the person's vocabulary were limited to 2,900 
words. According to our model, the answer is, probably pretty 
well for nonwords like MAVE and less well for items like FAIJE. 

Wickelflaws 

One other factor limits the model's performance on non- 
words, the notorious Wickelfeatures, which we borrowed from 
Rumelhart and McClelland (1986). This representational 
scheme is an example of  coarse, conjunctive coding (Hinton, 
McClelland, & Rumelhart, 1986). Some of  the advantages of  
this type of  coding were not fully captured by the Wickelfeature 
instantiation of  the idea. This representation conjoins features 
of  a phoneme with features of neighboring phonemes, but not 
with other features of  the same phoneme. The net result is that 
the representation for one Wickelphone (e.g., /mAk/ as in 
make) is too similar to the representation of  other, similar 
Wickelphones, such as /nAk/ in  the nonword nake. The model 
then tends to produce output that differs from the correct re- 
sponse by just one feature. Besner et al. (1990) noted that the 
model makes a large number of  errors that are one phoneme 
away from the correct answers; in fact, most errors are a single 
feature away (e.g., see Table 1). Approximately two thirds of  the 
errors on the McCann and Besner (1987) stimuli are also one 
feature off. 

We noted the inadequacy of  the Wickelfeature scheme in our 
article. However, we were wrong to suggest that the use of  this 
scheme did not contribute in any important way to the results. 
It did in fact have an effect: It artifactually increased the likeli- 
hood of single-feature errors. This limitation of  the model will 
be addressed in the next generation of  research, by developing 
an encoding scheme that increases the differentiation of  similar 
Wickelphones (such as /mAk/and/nAk/) ,  which should reduce 
the number of  single-feature errors. With a better phonological 
representation, only a modest increase in the size of the training 
corpus may result in significantly better nonword performance. 
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In summary, given the dual limitations of the simulation-- 
the size of the training corpus and the Wickelphonologymwe 
think the model does surprisingly well on nonwords. The power 
of the learning rule is such that the model is able to pick up 
generalizations that support the correct pronunciation of many 
nonwords despite these limitations. 

Other Naming  Strategies 

Even if the model is trained on a 30,000-word corpus with a 
perfect representation of phonology, it still will not simulate all 
aspects of human naming performance. People can and will use 
strategies that involve capacities that, although compatible with 
the model, are not within its immediate scope. This issue is il- 
lustrated by the Campbell and Besner (1981) study, in which 
subjects named nonwords such as THUF, THEIL, and THOVE. 
According to Besner et al. (1990), the model mispronounced 
more than 75% of these items. Again, our tally differs for rea- 
sons mentioned earlier, indicating that the model produced cor- 
rect pronunciations for more than half the items. In any case, 
the model produces plausible output for most items, and where 
it makes clear errors, they are again one or two features from 
correct. Besner et al.'s main point is that whereas the subjects 
in the experiment pronounced the th as /T /more  than 80% of 
the time, the model produces the/T/(as  in thin) and/D/(as  in 
thine) pronunciations about equally ot~en. However, the experi- 
ment involved repeated presentations of stimuli beginning with 
th. Repeating spelling patterns in words with differing pronun- 
ciations (e.g., HAVE-GAVE) produces interference in naming 
studies (Seidenberg, Waters, Barnes, & Tanenhaus, 1984). The 
question, then, is how subjects respond to a list of stimuli in- 
cluding items such as THAD, THA, THOVE, THAZ, and THEIL. 
One way to avoid the interference would be to always assign a 
single pronunciation to the digraph TH. One way to accomplish 
this would be to ignore the initial digraph, pronounce the word 
body, and add/T/ ,  the higher frequency pronunciation of th-. 
This strategy would obviously result in an overwhelming pro- 
portion of/T/responses. Our model does not attempt to simu- 
late such effects, although modifying it to do so would be 
simple. 

Monsell, Patterson, Tallon, and Hill (1989) reported an ex- 
periment in which they explicitly instructed subjects to use a 
similar strategy. Subjects were asked to "regularize" exception 
words such as PINT (i.e., to say/pint/). Again, the task could be 
performed by stripping off the initial consonant or consonant 
cluster, pronouncing the word body, and attaching the initial 
phoneme or phonemes. Again, although the current model does 
not simulate this strategy, modifying it to do so would be sim- 
ple; if the model is given word bodies such as -INT in isolation, 
it reliably produces the regular pronunciations. 

The Monsell et al. (1989) study shows that subjects can use a 
parsing strategy in naming familiar words. The extent to which 
this kind of strategy is used in naming nonwords is simply not 
known but will be important to investigate in the future. Con- 
fronted with a stimulus such as ~INJE, subjects may find it more 
efficient to parse the stimulus into subcomponents that are eas- 
ier to pronounce than the nonword as a whole. Such parsing 
strategies are clearly used by young readers in sounding words 

out, and the pathological condition termed letter-by-letter read- 
ing can be seen as an extreme application of the approach. 
There may be other strategies as well, such as drawing explicit 
analogies to particular lexical items. 

In summary, it is inappropriate to assume that all aspects of 
nonword naming Should be explained by a model that does not 
incorporate various other strategies. It is valid to ask whether 
the model can be extended in simple ways to deal with such 
phenomena; however, data such as Campbell and Besner's 
(198 l) do not present a serious challenge. The model doesn't do 
pig Latin, either, but the relevant task=specific processes could 
certainly be added to what is already there. 

Pseudohomophone Effects 

Besner et al. (1990) asserted that the model cannot explain 
the pseudohomophone effects in the McCann and Besner (1987) 
and McCann, Besner, and Davelaar (1988) studies. This pro- 
vides one of the main bases for their claim that the model needs 
lexical nodes. We have two reactions to arguments based on 
pseudohomophone effects. First, we do not think that these 
effects are inconsistent with the larger model, of which the im- 
plemented model is only a part. In the larger model, there are 
feedback connections from the phonological level to other parts 
of the system. These connections will tend to allow phonological 
representations to influence processing in other parts of the sys- 
tem. Because they have phonological representations that are 
the same as words, the processing ofpseudohomophones should 
produce wordlike effects via these feedback connections. A sec- 
ond point, however, is that it remains uncertain whether genu- 
ine pseudohomophone effects exist and if so, under exactly 
which conditions they are obtained. The logic oftbe studies de- 
mands that pseudohomophones and nonpseudohomophones be 
equated in terms of other factors relevant to processing. Besner 
et al. described these stimuli as "tightly matched" (p. 434). 
They were equated in terms of word bodies and bigram fie- 
quencies. In Seidenberg and Waters's (1989) corpus of naming 
latencies for 3,000 words derived from 30 subjects, the correla- 
tion between mean bigram frequency and latency is -.07. Mc- 
Cann and Besner did not equate the stimuli in terms of initial 
phoneme. This factor accounts for approximately 10% of the 
variance in the Seidenberg and Waters corpus, Initial phonemes 
differ in frequency, ease of pronunciation, and acoustic preper- 
ties that affect when responses are detected by the voice key. To 
give some hint of the problem, there are five words beginning 
with/v/in the McCann and Besner stimuli; they yielded a mean 
naming latency of 750 ms, 145 ms longer than the remaining 
stimuli; all five are in the nonpseudohomophone controls. 

McCann and Besner (1987) were aware of this problem and 
addressed it in a second experiment that involved two new sets 
of stimuli. These stimuli retained the initial phonemes from the 
pairs in the first experiment (e.g., BRANE-FRANE) but changed 
an internal vowel so that none of the items were pseudohomo- 
phones (e.g., BRONE-FRONE). Naming latencies for these new 
stimuli did not differ. However, a more direct comparison can 
be made with McCann and Besner's pseudohomophone and 
nonpseudohomophone stimuli. It is possible to select a subset 
of 54 pairs that are equated in terms of initial phoneme and 
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length. This list includes all pairs that could be included while 
meeting these constraints. The net pseudohomophone effect in 
these stimuli is 10 ms, which does not approach significance, 
t(l, 53) = -0.92, p > .35. Thus, we question whether there is 
a pseudohomophone effect at all. Note that this account also 
explains why the effect for the original 80 pairs of stimuli re- 
mains even after the error scores from the model are partialed 
out. The error scores do not measure variability associated with 
the acoustic-phonetic properties of the initial phoneme. Hence, 
partialing them out does not remove the effect. 

In summary, pseudohomophone effects have been problem- 
atic ever since Rubenstein, Lewis, and Rubenstein's (1971) 
original study and Clark's (1973) famous reanalysis of it. These 
effects are not inconsistent with the larger system of which our 
implemented model is but a fragment; however, the conditions 
under which such effects occur remain murky at best. 

Lexical Decision 

Besner et al. (1990) also questioned our account of the lexical 
decision task. They plotted the phonological error scores from 
the Waters and Seidenberg (1985) experiment and argued that 
words and nonwords are not discriminable on a phonological 
basis. They then asked why subjects in the experiment phono- 
logically recoded. We explicitly cautioned against this use of the 
phonological error scores in our article (Seidenberg & McClel- 
land, 1989, p. 529). The error scores are ones that we, the mod- 
elers, derive by comparing the computed output to the correct 
answer. The scores are then used to predict naming latencies. 
These error scores could not provide a basis for making lexical 
decisions, however, because there is no way for subjects to com- 
pute them without an external specification of the correct an- 
swers. Hence, the distributions of error scores in Besner et al:s 
Figures I and 2 are relevant to their account oflexical decision, 
but not to ours. 

They also reported the results of two experiments (Besner et 
al., 1990, Table 3). One was based on the observation that sev- 
eral of the strange words in the Waters and Seidenberg (1985) 
stimuli are homophones (e.g., AISLE-ISLE). Besner et al. (1990) 
thought this was important and repeated the study, replacing 
the problem words with nonhomophones. As in the original 
study, there was a regularity effect for low-frequency words. 
Hence, the study disconfirmed their hypothesis that the pres- 
ence of homophones in the original stimuli had an impact on 
the results. In their second study, they replaced all of the strange 
words with homophones. The idea here was that the regularity 
effect might not require the presence of strange words. Besner 
et al. reported obtaining the effect. This experiment actually 
provides a very simple illustration of our lexical decision theory. 
Our theory says that phonological effects in lexical decision de- 
pend on how discriminable the words and nonwords are in 
terms of orthography. The more the distributions of ortho- 
graphic error scores overlap, the bigger the phonological effect. 
For Besner et al.'s stimuli, the overlap is less than in Waters and 
Seidenberg's condition containing strange words but greater 
than in the condition in which the strange words were deleted. 
Most of the error scores for words and nonwords do not overlap; 
some do. Hence, the model predicts that phonology would only 

be consulted on a small proportion of trials. This might well 
produce an overall effect of regularity, but it would not be ex- 
pected to generalize over items. That is exactly what Besner et 
al. found. The regularity effect was significant by subjects and 
not by items. 

Besner et al. (1990) also questioned our account of the Waters 
and Seidenberg (1985) data (Seidenberg & McClelland, 1989, 
Figure 24). Our claim was that when the word stimuli consist 
of regular-exception words, the word-nonword decision can be 
based on orthographic information. Besner et al. noted that if 
the decision criterion for the data in Figure 24 is set to yield 
5.2% errors on words, as in the experiment, the error rate for 
nonwords is 28%, which is too high. Setting the decision crite- 
rion in this way is overly restrictive: The error rate in the experi- 
ment is an average based on 28 subjects, whereas the simulation 
data represent 1 subject. Each run of the simulation produces 
different error scores because words are sampled randomly dur- 
ing the training phase; this effect is compatible with the small 
individual differences between subjects that are observed. 
Hence, the decision criterion for the Figure 24 data does not 
have to yield 5.2% errors. For these data, we predict that deci- 
sions would primarily be based on orthographic information, 
given the small amount of overlap in the regular-exception 
word and nonword distributions. Phonology would he used 
only where the words and nonwords overlap. Given the small 
number of items in question, no overall effect of phonological 
regularity is predicted to obtain, as in the experiment. 

The same account of lexical decision performance applies to 
a third experiment reported by Besner et al. (1990), which con- 
cemed pseudohomophones. McCann et al. (1988) reported 
longer lexical decision latendes for pseudohomophones com- 
pared with nonpseudohomophones. The stimuli in this experi- 
ment are not equally wordlike, as indicated by the fact that the 
pseudohomophones produce smaller orthographic and phono- 
logical error scores. This is another consequence of failing to 
equate the stimuli in terms of initial phoneme: In our 1989 arti- 
cle, we described an experiment with two new sets ofnonwords, 
equated in terms of error scores, in which pseudohomophones 
did not yield longer latencies than nonpseudohomophones. Bes- 
ner et al. raised various methodological objections to this study; 
however, when they repeated the study with minor modifica- 
tions of the stimuli, they replicated our result: no pseudohomo- 
phone effect on lexical decision latendes. As in our study, 
pseudohomophones yielded more errors. These errors are 
wholly consistent with our account of lexical decision. Most of 
the word and nonword stimuli in these experiments can be 
differentiated on the basis of orthography. If the pseudohomo- 
phones and nonpseudohomophones are equated in terms of or- 
thographic properties, they will be equally difficult to dis- 
criminate from words, predicting no overall latency difference 
between the two types of nonwords. A few of the pseudohomo- 
phones (e.g., GANE and FEAL) are difficult to discriminate from 
words on an orthographic basis. Our theory suggests that sub- 
jects will have to consult phonological information on these tri- 
als. Phonologically recoding a pseudohomophone such as GANE 
may result in activation of the meaning associated with the ho- 
mophonous word 6AIN. On a small proportion of trials, this 
activated semantic information is suffident to cause a false-pos- 
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itive response (see Van Orden, 1987, for similar results). Thus, 
the model correctly predicts no overall pseudohomophone 
effect when the two types of  nonwords are equally wordlike; it 
also makes the more subtle prediction that false-positive re- 
sponses should be more likely to occur when pseudohomo- 
phones are difficult to discriminate from words on an ortho- 
graphic basis. These results are consistent with our view that 
decision criteria vary in response to properties of the stimuli; 
they provide little support for Besner et al.'s broader claim that 
pseudohomophones are always processed by accessing the base 
words from which they are derived. 

In summary, there is nothing about Besner et al?s (1990) ex- 
periments that is inconsistent with our account of lexical deci- 
sion. In questioning why subjects phonologically recode in lexi- 
cal decision, we think that Besner et al. overlooked an obvious 
possibility, that subjects may do so because they are using pho- 
nology to access meaning, which is useful in discriminating 
words from nonwords. It will take further research to establish 
whether it is phonology alone, or semantics alone, or both that 
contribute to the decision process under particular stimulus 
conditions. 

Other  Concerns  

Two of Besner et al 's (1990) other concerns should be ad- 
dressed. First, they remarked several times that the error scores 
fail to account for much of  the variance in response latencies. 
The Seidenberg and Waters (1989) corpus of naming latencies 
for 3,000 words provides a rigorous basis for assessing this 
claim. The corpus contains statistics concerning a broad range 
of  measures thought to influence lexical processing (e.g., fre- 
quency, Coltheart's N, and bigram frequency), as well as error 
scores from the model. Entering phonological error score first 
in a stepwise regression yields an R of  .29. Adding the factor 
length in letters increases the multiple R to .41. Error scores do 
not reflect length because of  the way the model is set up; each 
trial begins with a word being encoded as a pattern of  activation 
over the orthographic units. Thus, the model does not simulate 
letter-recognition processes that depend on length. Once length 
and error score are entered in the regression, the effects of  other 
factors such as Coltheart's N, bigram frequency, and Kucera- 
Francis frequency are almost entirely eliminated. The only 
other factor that matters is initial phoneme, which brings the 
multiple R up to approximately .7. In summary, although these 
data are still being analyzed, it is clear that the error scores ac- 
count for significant amounts of  variance, certainly more than 
some other factors that are standardly manipulated in experi- 
ments. Clearly, part of  the unexplained variance may be due to 
the fact that error scores do not reflect the words that were not 
in the training corpus. 

Finally, Besner et al. (1990) criticized our claims about a sin- 
gie route for naming. We actually discussed two routes: the one 
we implemented, and a second route through meaning. The sin- 
gle-route idea was that the process we implemented could gen- 
erate correct output for regular and irregular words and non- 
words. This contrasted with the nearly universal prior intuition 
that at least two processes would be necessary to accommodate 
all these cases. Once it is acknowledged that a single process can 

generate correct output in all these cases, we think it is impor- 
tant to consider the division of  labor between the routes. We 
agree with the insight of  dual-route modelers that these pro- 
cesses jointly support performance; we merely disagree on what 
kinds of  knowledge they involve and how they work. 

Conclus ions  

As we stated in the 1989 article, our model is limited, and 
there is plenty of room for further development. Besner et al:s 
(1990) idea that there are entries for individual lexical items is 
an interesting one that might be developed as part of  an explicit 
alternative model. It would certainly be impressive if such a 
model could show how knowledge of  spelling-sound correspon- 
dences is acquired and represented in memory, simulate in 
quantitative detail the results of 20 or 25 experiments, generate 
new predictions that are confirmed in subsequent studies, pro- 
vide an account of  individual differences in reading skill, cap- 
ture basic facts about the acquisition of  this skill, show how 
differences among orthographies influence processing, generate 
several novel hypotheses about the bases of  developmental dys- 
lexia, perform like several acquired dyslexic patients in the liter- 
ature when damaged, and provide a theory of  how the lexical 
decision task is performed. It would also be impressive if the 
model could generate the correct pronunciations of nonwords 
such as JINJE on the basis of  exposure to 2,900 words. A model 
of  this sort would be a worthy candidate for consideration as an 
alternative to ours. If that model could also produce a pseudo- 
homophone effect--and there were a real pseudohomophone 
effect in the behavioral data--we would have to conclude that 
it is indeed the better model. 
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