2 Progress in understanding word
reading: Data fitting versus
theory building

Mark S. Seidenberg
University of Wisconsin, USA

David C. Plaut
Carnegie Mellon University, USA

Computational modelling is a tool that can be used in different ways for
different purposes. There are several distinct styles of modelling research in
cognitive science and neuroscience, with differing goals, methods, and evalu-
ation criteria. Nowhere is this clearer that in the area of lexical processing in
reading, in which computational models have played a prominent role for
over 25 years.

In this chapter, we examine two contrasting approaches to computational
models of reading, the dual-route approach developed by Max Coltheart
and his colleagues, and the parallel distributed processing (PDP) approach
developed by ourselves, James L. McClelland, and others. These approaches
have spawned a series of implemented models (including Coltheart, Curtis,
Atkins, & Haller, 1993; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001;
Harm & Seidenberg, 1999, 2004; Plaut, 1997; Plaut, McClelland, Seidenberg,
& Patterson, 1996; Seidenberg & McClelland, 1989, among others). The
usual way this research is assessed is by examining individual models with
respect to factors such as their fidelity to behavioural data, the breadth of
the behavioural phenomena addressed, the limitations of the model, and
so on. Our primary goal in this chapter is not to evaluate individual models
but rather to examine more basic foundational assumptions of the two
approaches. They differ fundamentally with respect to these assumptions,
including what models are for, how they are developed, and how they are to
be evaluated. Of course, these differences greatly complicate the task of com-
paring models. Dual-route models are constructed with specific desiderata
in mind, some of which are not shared by the other approach, and they
necessarily come out “ahead” if those criteria are used in comparing models.
The same is true for the PDP models. If all fruits are judged on the basis of
what makes a good apple, then apples are necessarily the best fruit. This is
unsatisfying if only some of the criteria also apply to oranges.

Our goal is to clarify the differences between the approaches and how
they affect the interpretation of specific models. We will argue that the
more important consideration at this stage in the development of the field is
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between the alternative approaches, not individual models. The questions
that end up mattering are ones such as, which approach raises the most
interesting questions? Is better able to relate behaviour to its brain basis? Can
explain individual variation in reading ability or style? Offers theoretically
meaningful links between reading and other aspects of cognition? Our claim
is that other questions, such as which model has been applied to the broader
range of experimental paradigms and tasks, or how good a fit has been
achieved to the results of specific behavioural studies, are currently somewhat
less important. The latter questions already presuppose a commitment to a
particular approach, but the basis for making such a commitment is what
needs to be examined. One set of questions involves assessing which approach
is on a trajectory toward answering basic questions; the other set is more
focused on keeping score about the intermediate products of the research
programmes.

It will not surprise readers to learn that, in our view, the results of this
analysis favour the PDP approach. But convincing readers of this conclusion
is far less important to us than facilitating a deeper understanding of the
nature of the disagreement. There is no doubt that the dual-route approach
has served a highly valuable function by orienting researchers to important
research questions, and generating testable hypotheses that promoted numer-
ous empirical studies over a multiyear period. Moreover, the competition
between the approaches has advanced the understanding of the theoretical
and empirical issues considerably. In our assessment, however, the imple-
mented dual-route models—particularly the 2001 attempt to expand the
range of phenomena to which the dual-route cascaded (DRC) model was
applied—exposed some fundamental limitations of the approach.

DRC is an example of a bottom-up, data-fitting approach to modelling
that has a long history in cognitive science. The limitations of this approach
have been widely discussed in the literature, dating from at least Newell’s
famous “Twenty Questions” chapter (1973). The basic problem with the
bottom-up approach is that a model can fit specific data patterns without
capturing the principles that govern the phenomena at a biological, computa-
tional, or behavioural level. “Fitting the data”, then, tells us more about the
flexibility of a style of modelling than about the questions that motivated the
research in the first place. To be clear, the PDP approach is not wholly
immune from these problems either, because it also involves detailed compar-
isons between models and data, and not all aspects of all models are equally
well motivated. However, it largely avoids them by being grounded in a set
of more completely specified and constrained computational principles. The
emphasis in the PDP approach is not on capturing every empirical data point
in a single model but rather on providing a framework for addressing issues
that will continue to be the focus of attention for the foreseeable future: how
the brain achieves the computations that underlie reading; the relationship
between reading and other capacities; the bases of differences (across indi-
viduals and writing systems) in reading, and how such differences interact
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with brain injury; and the causes of developmental dyslexia, understood at
genetic, neurophysiological, and behavioural levels.

The dual-route approach

The term “dual-route model” is ambiguous and a source of confusion for
many researchers (Coltheart, 2000; Harm & Seidenberg, 2004). The term can
refer either to dual (visual versus phonological) mechanisms for accessing the
meanings of words from print (which Coltheart terms “DR-M models”) or
dual (lexical versus sublexical) mechanisms for computing the pronunciations
of words (which Coltheart terms “DR-P models”). Although Coltheart (1978)
discussed the issue of visual versus phonological processes in reading, most
subsequent research focused on the DR-P idea (e.g. Coltheart, Davelaar,
Jonasson, & Besner, 1977; Paap & Noel, 1991; Patterson, Marshall, &
Coltheart, 1985), and that is our focus here. The dual-route theory was
initially developed by means of informal information-processing models
(sometimes called “box and arrow” models), of which there were multiple
variants (see Coltheart, Sartori, & Job, 1987; Patterson et al., 1985, for
examples).

Computational versions of the DR-P model were eventually developed
after critiques of the informal modelling approach (e.g. Seidenberg, 1988) and
the development of connectionist models of word reading (e.g. McClelland &
Rumelhart, 1981; Seidenberg & McClelland, 1989).

Coltheart et al. (2001) presented considerable background concerning the
origins of their approach and its fundamental assumptions. They link their
models to nineteenth-century “diagram makers” such as Lichtheim (1885),
and emphasize the continuity between the informal (e.g. Coltheart et al.,
1977) and computational versions of the dual-route model. Principal features
of the approach include the commitment to a version of the modularity
hypothesis (Fodor, 1983; Coltheart, 1999), to theorizing pitched at the level
of the “functional architecture” of the cognitive system (Shallice, 1988), and
to identifying the modules of the functional architecture primarily through
studying brain-injured patients.

Several other important components of the approach should also be noted.
First, Coltheart et al. (2001) emphasize the data-driven character of their
modeling, endorsing Grainger and Jacobs’ (1998, p. 24) view that “in devel-
oping algorithmic models of cognitive phenomena, the major source of con-
straint is currently provided by human behavioral data”. Second, they view
models as cumulative: each model improves upon the previous one by adding
to the phenomena covered by a previous version. Thus, the 2001 version of
the DRC is said to account for the same facts as the 1999 version but also
many others. The models are described as “nested” with respect to data cov-
erage. Again they quote Grainger and Jacobs (1998): “[I]n other sciences it is
standard practice that a new model accounts for the crucial effects accounted
for by the previous generation of the same or competing models.” Finally,
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Coltheart and colleagues emphasize fidelity to behavioural data as the
principal criterion for evaluating models (see also Rastle & Coltheart, this
volume). Models are designed to simulate data patterns, and a model is valid
unless disconfirmed by making an incorrect prediction. So, for example, in
justifying their use of an interactive-activation (IA) model as a component of
DRC, the authors note that the McClelland and Rumelhart IA model had
not been “refuted” by any behavioural data; thus, there was no empirical
reason to abandon it.

Having described the rationale behind their approach and motivated major
parts of their model’s architecture, Coltheart et al. (2001) turned to applying
the model to a large number of phenomena. The most noteworthy feature
of the research was the application of a single model to more than 20 empiri-
cal phenomena involving word and nonword reading. The breadth of the
data coverage led Coltheart and colleagues to conclude that “the DRC model
is the most successful of the existing computational models of reading”
(p. 204).

Comments on the approach

As already noted, the technique of fitting models to data has a long history in
psychology. Other prominent examples from the not-too-distant past include
Sternberg’s (1969) serial search model; Smith, Shoben, and Rips’ (1974)
model of semantic categorization; Collins and Loftus’ (1975) spreading
activation model of semantic memory; Clark’s (1969) deductive reasoning
model; Ratcliff’s (1978) diffusion model of memory retrieval; Massaro’s
(1989) fuzzy logical model of perception; and so on. The methodology in this
research was roughly as follows: behavioural data were collected in the service
of addressing a general question such as “how do people retrieve information
from memory?” or “how are categories organized in memory?” The data
derived from a small number of laboratory tasks such as probe verification
(“is this stimulus a member of a prespecified target set?”), statement verifica-
tion (“is a canary a bird?”), and probe recognition (“is this stimulus new or
0ld?”). The researcher then developed a model that rationalized various
facets of the data, such as why some statements are more difficult to verify
than others. The models were usually presented informally (in words or
figures), although some models were implemented as computer simulations
for additional precision and clarity. The models were mainly tools for devel-
oping explicit accounts of the types of procedures and knowledge representa-
tions that gave rise to overt performance.

These models were developed out of a vocabulary of representations and
processes loosely drawn from flowcharting. Thus, there would be data struc-
tures (such as propositions) and operations upon them, such as encoding,
comparing, testing conditions, decision making, and so on. The inventory
of elements out of which a model could be constructed was large, provid-
ing considerable flexibility and descriptive power. A model could then be
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developed which fit some interesting empirical phenomenon (For example,
why it is easier to decide that a canary is a bird than an animal).

The DRC models were developed in a similar fashion. Over a multiyear
period, researchers had collected a large body of data in the service of
addressing basic questions such as how people read words aloud (naming) or
decide whether a string of letters is a word (lexical decision). Informal models
were then constructed to fit these data. The models were built out of con-
structs, such as rules (for pronouncing letter strings), lexical nodes, activation
levels, spreading activation, and so on, that were carried over from earlier
accounts of word reading. These concepts were employed because they
closely matched intuitions about reading and language, and because they
were they were available as part of the information-processing vocabulary of
the era. Eventually, the models were implemented as computer simulations
that reproduced behavioural effects, such demonstrations being taken as
evidence that the model was correct, especially when a single model could be
applied to a large number of findings derived from several tasks.

Coltheart et al. (2001) termed this approach “old cognitivism” (in contrast
to the more recent PDP paradigm). Although they correctly situated their
research within this older tradition, they did not discuss long-standing cri-
tiques of it. The basic problem is that the strategy of accounting for the most
data possible is not itself sufficiently powerful to converge on a satisfactory
theory in cognition. Rather, what happens is this: The researcher has a certain
favoured vocabulary of elements out of which to construct a model that
accounts for target behavioural data. There is also considerable freedom to
introduce new types of representations, processing mechanisms, assumptions
about the time course of processing, parameter settings, and so on (see, for
example, the discussion in Seidenberg, 1988, of how boxes are added to such
models). Considerable resources are therefore available for model construc-
tion. The elements of the model are configured in response to empirical data;
that is the essence of the methodology. This procedure does not guarantee,
or even promote, converging on theoretical generalizations that explain the
phenomena.

This assertion seems rather harsh; how can it be evaluated? One way is
to ask of any given model whether it accounts for data other than those that
were used in constructing it. If a model instantiates relevant general principles,
it should accommodate other data of a similar kind. If the model merely
fits selected target data, there is no guarantee that it will generalize; and if
it does not, this is a telltale sign that the model has failed to capture the
general principles that underlie the behaviour. In our view, the DRC model—
particularly the 2001 version—is subject to this criticism.

The DRC 2001 model was configured to fit the results of studies illustrat-
ing a variety of phenomena concerning word and nonword reading. For each
phenomenon (such as regularity effects, frequency by regularity interaction,
consistency effects, nonword naming, pseudohomophone effects, and so on),
the authors fit the results of a key experiment or two demonstrating the
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effect. For example, the frequency by regularity experiment was one by Paap
and Noel (1991), the consistency experiment was one by Jared (1997), and the
pseudohomophone experiments were from McCann and Besner (1987) and
Taft and Russell (1992). In each case, of course, one might choose other
experiments addressing the same phenomenon. For example, the frequency-
by-regularity interaction can also be assessed with studies such as Jared
(1997); Seidenberg (1985); Seidenberg, Waters, Barnes, and Tanenhaus (1984);
Taraban and McClelland (1987); Waters and Seidenberg (1985); and others.
Consistency effects can be assessed with respect to studies such as Cortese
and Simpson (2000); Jared (2002); Jared, McRae, and Seidenberg (1990); and
Seidenberg et al. (1984). If one examines the results across a set of studies on
one issue, it often turns out that the behavioural effect in question consist-
ently replicates across studies, but not in DRC. In other words, DRC’s fit to
the data is rather better for the study presented in Coltheart et al. (2001) than
for other exemplars.!

To illustrate, a number of studies have reported that words with inconsistent
spelling-sound correspondences yield longer naming latencies than words
with consistent correspondences (e.g. Cortese & Simpson, 2000; Glushko,
1979; Jared, 1997, 2002; Seidenberg et al., 1984; Waters & Seidenberg, 1985).
A word such as GAVE is inconsistent because the pattern—AVE is pro-
nounced differently in HAVE. Inconsistent words are theoretically important
because they are rule governed and therefore should pattern with words such
as MUST, which have no close inconsistent neighbours. The weights in a PDP
model reflect the net effects of exposure to a large corpus of words. Other
factors being equal, inconsistent words such as GAVE should take longer to
read aloud than a more consistent words such as MUST, even though both
are “rule governed”. This effect was first reported by Glushko (1979); sub-
sequent studies showed that it is larger for lower frequency words and for
younger readers. Consistency effects therefore provide evidence to support
a model which represents degrees of consistency in the mapping from spelling
to sound, rather than rule-governed forms and exceptions (Seidenberg &
McClelland, 1989). However, Coltheart et al. (2001) suggested that consist-
ency effects arise from other, confounding factors, and showed that DRC
simulated the results of a study by Jared (1997) (Figure 2.1). Thus, consist-
ency effects seemed to be less of a problem for the dual route approach than
some had thought.?

Consistency effects have been reported in several other studies; how does
DRC fare with respect to these findings? Consider Glushko’s (1970) original
study comparing regular words (e.g. MUST), exception words (e.g. HAVE),
and inconsistent words (e.g. MINT). As Figure 2.2 indicates, the study
yielded a regularity effect (regular words faster than irregular) but also a
consistency effect (inconsistent words longer than regular). The DRC model,
tested on the same words, reproduces the regularity effect, but not the
consistency effect (Figure 2.3). Jared (2002) manipulated both regularity
(rule-governed words versus exceptions) and consistency (consistent versus
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Figure 2.1 (A) Results of Jared’s (1997) study of consistency effects. (B) Dual-
route cascaded simulation of the same study.

inconsistent spelling patterns) in a factorial design. The behavioural results
and DRC’s performance on the same items are presented in Figure 2.3. The
behavioural data yielded a consistency effect (consistent < inconsistent) but
no effect of regularity. The simulation yielded a regularity effect (regular <
exception) but no effect of consistency. There are similar differences between
the behavioural and simulation results in other studies of consistency effects.

Thus, the DRC model does not capture the consistency effects observed
across different studies in different laboratories. The methodology used in
developing DRC results in overfitting: The model is closely tailored to the
results of specific experiments and is less successful when assessed against
other studies. Would one really want to conclude that a model captures a
phenomenon if it adequately reproduces the results of one study, but not
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Figure 2.2 (A) Glushko’s (1979) study of regular (rule-governed), regular incon-
sistent, and exception word naming. Latencies for regular inconsistent
words fall between regular words and exceptions. (B) Dual-route cas-
caded simulation using the same words. Regular inconsistent words
do not differ from regulars.

others that yielded the same pattern of results (e.g. using different stimulus
items)? One could just as well conclude that the model failed to simulate the
phenomenon.

One might further hold that a model needs to explain phenomena in a
principled way. That is, the explanation for the phenomena should derive
from biological, computational, or behavioural principles that have some
independent justification and thus are not merely introduced in response to
the data at hand. Judged by these additional criteria, DRC does not fare well
either. DRC’s core commitments were introduced as ways of rationalizing
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Figure 2.3 (A) Results of Jared’s (2002) study of regularity and consistency
effects. F = friends, E = enemies. Words with more friends than
enemies are regular; words with more enemies than friends are excep-
tions. The results indicate a reliable effect of consistency and no effect
of regularity. (B) Dual-route cascaded simulation of this study. The
results show a reliable effect of regularity but not consistency.

data about reading, not because they were independently motivated by other
concerns. They were largely inherited from the informal models of the pre-
computational era that relied heavily on intuitions about reading: for example,
the “lexical entries” of the 1970s became the “localist representations of
words” in the DRC models.

We have noted that DRC-type models are built out of a large inventory of
modelling elements. There is little constraint on what can be included in a
model to allow it to fit data successfully. It might therefore seem that the DRC
model merely needs some additional modification in order to fix the general-
ization problem identified above. For example, interactive-activation models
(one component of DRC) have a large number of parameters governing the
flow of activation between and within units. (Coltheart et al., 2001, Table 1,
p. 218, list 31 such parameters, which do not include seven additional
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parameters introduced to model lexical decision.) Each of these parameters
can take on a large number of values. Hence, the space of IA models defined
by these parameters is huge. Perhaps fixing the model is just a matter of
searching this space more systematically to find a set of parameters that
yields good fits to a broader range of behavioural results, or of adding add-
itional components to the model. Indeed, it is common lore that complex
models with large numbers of parameters can “fit any data”; all that is
required is sufficient skill and stamina to find the right combination.

It turns out that DRC-type models do not actually behave this way. Rather,
developing a model to fit a set of data has the opposite effect: it makes it more
difficult to modify the model to accommodate additional data. The results
described by Coltheart et al. (2001) are closely tied to the parameter settings
that were used. We have not explored all possible combinations of parameter
settings, but it is clear from experimentation with the model that it is very
difficult to find a different parameter set that yields better results than the
ones reported. Although better fits might be achieved, one assumes that if the
authors had been able to find such a set, they would have reported it. In fact,
the model’s performance is brittle insofar as it does not perform as well with
many other parameter settings.

Further complications arise from altering parameters to account for add-
itional phenomena. For example, in Coltheart et al. (2001), the standard
parameters failed to exhibit the facilitatory effect of neighbourhood size on
word-naming latencies observed empirically by Andrews (1989, 1992) and by
Sears, Hino, and Lupker (1995). In order to get the DRC to exhibit this effect,
Coltheart and colleagues eliminated lateral inhibition within both the ortho-
graphic and phonological lexicons, and reduced feed-forward letter-to-word
inhibition. Even so, while this yielded a main effect of neighbourhood size,
it still failed to produce the interaction of neighbourhood size and word
frequency as observed by Andrews (1992) and Sears et al. (1995). Moreover,
these new parameter values create problems with respect to other phenomena.
For example, the new parameter regime introduced to produce neighbour-
hood effects compromises the ability of the model to exhibit consistency
effects. Whereas the original parameters produced a weak but reliable effect
of consistency for Jared’s (1997, experiment 1) stimuli (and no errors), the new
parameters produce relatively high error rates (10-16% across conditions)
and no reliable consistency effect.

This behaviour is characteristic of DRC. Changing parameters may allow
the model to fit better the results of an individual experiment. However, it
is then essential to examine the effects of these parameter changes on other
aspects of the model’s behaviour, which Coltheart et al. (2001) did not report.
In practice, changing parameters to fit specific results has the effect of moving
the behavioural mismatch somewhere else. One leak is patched but others
spring up elsewhere because the underlying problem has not been addressed.

This analysis is further borne out by developments since the publication of
the 2001 version of DRC. Coltheart and colleagues have presented additional
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data and arguments favouring the DRC model, primarily focused on atypical
cases of developmental or acquired dyslexia with patterns of impaired
reading that are said to contradict one or another aspect of the PDP theory
(e.g. Blazely, Coltheart, & Casey, 2005; Coltheart, in press). The interpret-
ation of such case studies is highly controversial, particularly double dissoci-
ations (see Dunn & Kirsner, 2003; Juola & Plunkett, 2000; Plaut, 1995; Van
Orden, Pennington, & Stone, 2001). The more important point, however, is
that Coltheart and colleagues’ analyses of these cases are not tied to their
implemented model. They wish to argue that certain patterns of behavioural
impairment are consistent with their model (and not the PDP approach);
however, these arguments are not coupled to simulations of the cases in
question.

On our analysis, the successes of the 2001 version of DRC are so tightly
bound to particular parameter values and other implementation-specific fea-
tures that it should be difficult to extend it to other phenomena, including
these case studies. The net result is that the most recent arguments in favour
of the dual-route approach have the same form as in the precomputational
modelling era. We are back to arguments of the 1980s from double dissoci-
ations and patterns of “selective” impairment. It is almost as though the
models (and the insights about the interpretation of such cases that emerged
from them) had never occurred.

The PDP approach

All cognitive processes, including word reading, are ultimately implemented
in terms of changes in patterns of neural activity in the brain. Traditional
cognitive modelling, of the sort exemplified by the DRC model, assumes that
this fact places little if any constraint on the nature of the computations
performed by the brain, thereby licensing the introduction of any types of
cognitive mechanisms thought capable of fitting behavioural data.

The PDP approach starts from a very different assumption—namely, that
the nature of cognitive processing is shaped and constrained in fundamental
ways by properties of the underlying neural substrate. The goal is to formu-
late a set of computational principles that capture how neural activity gives
rise to cognition. In pursuing this goal, the mechanisms that are available for
modelling are extremely limited and must ultimately be grounded in emerging
insights from neuroscience. Note, however, that neuroscientific investigation
per se does not directly identify the relevant principles, because not all pro-
perties of the brain are equally relevant to understanding cognition. Thus, the
PDP approach puts forth hypotheses about which properties are central and
which are peripheral. These hypotheses are supported by computational
demonstrations that models embodying the proposed principles are, in fact,
consistent with the relevant behavioural (and neuroscientific) data. Similarly,
the limitations of a model can suggest ways in which existing principles need
to be modified, supplemented, or replaced. In this way, an individual model
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need not be interpreted as a proposed “solution” that is somehow correct or
incorrect on the basis of its fit to data. Rather, modelling as an enterprise can
be a means of exploring the validity and implications of a set of hypotheses
for how cognitive processes are implemented in the brain. It is the underlying
hypotheses, rather than the models per se, which collectively constitute a
theory of a given domain.

The principles at the core of PDP modelling are well known: cooperative
and competitive interactions among simple, neuron-like processing units;
different types of information represented by distributed patterns of activity
over different groups of units, with similarity reflected by pattern overlap;
knowledge encoded as weights on connections between units; and learning as
gradual adjustment of connection weights based on the statistical structure
among inputs and outputs, often via internal (“hidden”) representations.
Although this list is certainly not exhaustive—for instance, it makes no men-
tion of intrinsic variability or recurrent connectivity—it conveys the essence
of the approach.

Of particular note is the emphasis on learning. Although it is sometimes
possible to hand-specify connection weights for small networks that employ
localist representations (that is, one unit per entity, as in the lexical route of
the DRC model), this quickly becomes infeasible for networks with distri-
buted representations and tens, if not hundreds, of thousands of connections.
More to the point, hand-specifying representations, even if possible, would
undermine one of the most interesting aspects of the approach—the ability
to use a general learning procedure to acquire knowledge that gives rise to
effective representations and processes. This property—Ilacking in many trad-
itional cognitive models including the DRC—is critical for two reasons. The
first is that it allows the approach to make direct contact with developmental
data on the acquisition of cognitive skills, which can be essential to improving
pedagogical practice and elucidating mature mechanisms in adults (e.g. Harm
& Seidenberg, 1999; Thomas & Karmiloff-Smith, 2003). The second reason is
that the nature of the representations and processes developed through learn-
ing, when analysed and understood thoroughly, can give rise to novel and
interesting hypotheses about cognitive and neural representations in the brain
(Plaut & McClelland, 2000).

A major attraction of the PDP approach is that the same computational
principles are brought to bear not only across development, skilled perform-
ance, and breakdown after brain damage, but also across the full range of
perceptual, cognitive, and motor domains. One consequence is that the
mechanisms available for modelling are not introduced solely in response
to the data from a particular domain, but are constrained to be broadly con-
sistent with applications in other domains. Of course, developing any specific
model involves combining the domain-general principles with domain-specific
assumptions about the tasks to be performed and the way in which relevant
inputs and outputs are represented. For instance, a simulation of reading
aloud must, at the very least, specify a corpus of text for reading acquisition
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as well as representations for visual or orthographic input and phonological
or articulatory output. Ideally, these domain-specific assumptions are sup-
ported by independent evidence, but they can also be taken as additional
hypotheses that are subject to evaluation and revision. Thus, it is often
informative to develop and examine a range of models that vary in particular
ways, in order to clarify what specific properties lead to its ability (or
inability) to account for behavioural findings, and the extent to which these
derive from domain-specific or domain-general assumptions. In this way, PDP
models are like experiments—a means of testing hypotheses by exploring the
consequences of particular factors that influence performance.

Finally, it is important to emphasize that, like all models, PDP models are
approximations of the representations and processes that underlie human
cognition. These approximations are of two kinds. The first concerns the
nature of the inputs and outputs of a model. No model implements the entire
processing stream from sensory receptors to muscle contractions. Models
must incorporate assumptions about the form of input representations gen-
erated by earlier, upstream processes, and about how the model’s output
representations are used by later, downstream processes to produce behaviour.
Most word-reading models assume static orthographic input representations
and static phonological output representations, but, clearly, these assumptions
ignore the complex, temporal nature of early visual processes (including eye
movements) (e.g. Rayner, 1998; Reichle, Pollatsek, & Rayner, 1998) and later
articulatory processes (e.g. Browman & Goldstein, 1990; Plaut & Kello,
1999). Although omitting these processes may limit the ability of implemented
models to address some order and length effects (see Rastle & Coltheart, this
volume), such effects do not pose fundamental challenges to the more general
framework.

The second kind of approximation concerns simplifications within the
implementation itself. Not every principle plays a critical role in explaining
every phenomenon. Some models make simplifications for reasons of compu-
tational efficiency. For example, a feed-forward network is far less compu-
tationally demanding to simulate than a fully recurrent version and provides
an adequate approximation in some contexts, even though it lacks the inter-
activity that plays a major role in many PDP accounts. Other simplifications
are made for expository purposes. For instance, Rastle and Coltheart (this
volume) portray Plaut et al.’s (1996) use of localist units for graphemes and
phonemes as inconsistent with the principle of distributed representation.
However, the simulations were focused on the implications of distributed
representation at the level of words and nonwords, and coding graphemes
and phonemes as patterns of activity, although straightforward compu-
tationally, would have obscured the importance of condensing spelling-sound
regularities.® Finally, some simplifications provide a means of hypothesis test-
ing. A given model may incorporate only a subset of the relevant principles in
order to evaluate whether that subset is sufficient. In this way, modelling is no
different than empirical work: no experiment on word recognition examines
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all factors that influence processing; rather, studies are designed to provide
clear evidence about individual factors and their interactions.

Comments on the approach

The PDP approach to cognitive modelling in general, and word reading in
particular, carries with it a number of implications that are worth spelling out
in detail. The first and most obvious is that the development of a model is
subject to several constraints, only one of which is fitting specific behavioural
findings. The result is that, in the short run, specific PDP models may not
match particular empirical findings or account for as much variance in
empirical data as approaches for which data fitting is the primary goal.

In fact, it would be difficult for PDP modelling to do as well even if data
fitting were a goal of the approach. The reason relates to the notion of a
parameter. In the DRC, a parameter (e.g. letter-to-word inhibition) is a theor-
etically unconstrained numeric value that can be manipulated independently
of other parameters and whose consequences for performance can be evalu-
ated relatively directly. As a result, it is possible to “search” parameter space
by running the model repeatedly until a set of parameter values is found that
optimizes the fit between model and human performance. The process
becomes more computationally demanding when the number of parameters
is large and a broad range of data must be fit, but the basic character of the
process is unchanged.

The situation is very different for PDP modelling for a number of reasons.
First, many of the numeric values within a simulation—most obviously, the
connection weights—are not under the direct control of the modeller but are
derived algorithmically, and thus do not constitute parameters in any real
sense. Second, some of the values that can be directly manipulated, such as
those that govern learning and some aspects of network architecture, turn
out to have relatively little impact on the nature of what is learned, other than
to speed up or slow down the process (as long as the values are within reason-
able ranges). Other properties of the models that vary, such as the numbers of
units or layers, have broad consequences that are interpretable with respect to
behaviour and thus are theoretically relevant.

There are, of course, many aspects of the design of a simulation that
ultimately affect its match to behavioural data, but the degree to which these
can be optimized is severely constrained by the reliance on learning. Training
a large PDP simulation on a complex, realistic task can take days if not weeks
on modern-day computing hardware. At this time scale, it is simply infeasible
to rerun the simulation a large number of times in order to “search” for
parameter values that optimize its fit to data. In practice, small-scale simula-
tions are run to refine general aspects of a simulation, and then multiple
runs of the early stages of learning by the full-scale simulation are carried out
in order to improve the ability of the model to learn the training corpus.
Note, however, that what the model is directly trained to do (generate correct
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pronunciations of words) is only a small aspect of how it is evaluated
empirically. Rather, models are evaluated largely against incidental con-
sequences of learning, such as the relative rates of acquisition of different
types of stimuli, differences in the processing time required to generate word
pronunciations, accuracy and error types in pronouncing novel stimuli, or
performance after different types of damage. The ways in which design
decisions affect these aspects of performance are generally complex and often
difficult to anticipate, further limiting the modeller’s ability to fit data directly.

None of these comments should be taken to imply that the relationship
between model and human performance is not important to the development
of PDP models. To the contrary, success at accounting for empirical findings
remains the primary means by which a model is evaluated. What must be
clarified, however, is what exactly should be taken as the findings against
which models should be judged, and what kinds of comparisons between
model and human data are informative for understanding the cognitive and
neural processes underlying reading.

It should be clear from our earlier discussion of overfitting by the DRC
that we consider it unwise to place undue theoretical weight on the quantita-
tive fit of a model to data from any individual empirical study. The results of
a single study include large amounts of variance due to a variety of factors
other than those under investigation. Even attempts at direct replication that
vary only subjects or items often succeed only partially, or reproduce statistical
effects but not the quantitative relationship among condition means. Robust
behavioural findings that have been replicated across a number of studies
provide a more appropriate basis for evaluating models.

Although testing a model with the same stimuli as used in a behavioural
study provides a powerful means of comparing the two, care must be taken
not to overinterpret the quantitative fit without clear measures of the reli-
ability and precision of the findings themselves. This point is all the more
important when considering item-level correlations between model perform-
ance and behavioural data from large corpora (e.g. Balota, Cortese, &
Sergent-Marshall, 2004; Spieler & Balota, 1997). Even setting aside idio-
syncratic aspects of experimental set-up and subject population, the factors
that give rise to the most systematic item variance may not be those that are
the most important to understand theoretically (Seidenberg & Plaut, 1998).
For example, it is well known that word frequency has a strong impact on
naming latencies. In PDP models, the influence of frequency on performance
is indirect: it determines how often a word is presented during training, which
in turn determines how strongly the word’s spelling-sound correspondence
influences weight values. Although knowledge of all words is superimposed
within the same set of weights, the impact that individual words had during
training nonetheless leads to faster and more accurate processing. The DRC
model lacks a procedure for learning from word presentations, and so (log)
frequency is directly stipulated in terms of the resting activation of word
units, which, in turn, directly influence processing time. It is thus entirely
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unsurprising that the DRC model captures more frequency-related variance
than PDP models (Coltheart et al., 2001), but in doing so, it provides no
insight into the basis for such effects in man. Conversely, sometimes, factors
that account for little item-level variance within a large corpus can nonethe-
less lead to significant theoretical insight. For instance, the distinction between
regularity (whether a word’s pronunciation adheres to grapheme-phoneme
correspondence rules) and consistency (the degree to which a word’s pro-
nunciation agrees with those of similarly spelled words) plays a major role in
distinguishing dual-route from PDP approaches, but the amount of response
time (RT) variance attributable to either factor is tiny on either account.

The argument for the importance of not overinterpreting individual behavi-
oural experiments applies with equal force to the interpretation of single-case
studies in cognitive neuropsychology and their implications for models. Such
cases appear to be highly informative because they may produce behavioural
effects that are larger and more dramatic than the corresponding effects in
the normal population (For example, surface dyslexic patients make errors
in pronouncing exception words that normal subjects are merely slower at)
or, in some instances, they exhibit effects that are not observed in normals
(such as semantic errors in single-word reading by deep dyslexic patients).
The standard assumption in interpreting such cases is that all individuals
share a common cognitive architecture, so that any observed deviation from
control subjects is due solely to the effects of the lesion. This stance is, of
course, belied by well-established individual differences in cognitive perform-
ance within the normal population in virtually every cognitive domain (see
chapters in Boyle & Saklofske, 2004, for overviews). Of immediate relevance is
individual variation in tasks such as word and nonword naming (e.g. Andrews
& Scarratt, 1998). Zevin and Seidenberg (2006) illustrate how such individual
differences can be explained in connectionist networks. The same model
was run different times, corresponding to different subjects. Each model was
exposed to somewhat different training examples, corresponding to small
differences in reading experience. The different models produced different
pronunciations for nonwords such as MOUP and WALF, as observed in
people (Andrews & Scarratt, 1998; Seidenberg et al., 1994). Hence, the stand-
ard assumption underlying the interpretation of the naming performance
of brain-injured patients—that there are no relevant premorbid individual
differences—is contradicted by the Zevin and Seidenberg (2006) data.

The problem of interpreting single cases is exacerbated by the tendency of
neuropsychologists to study (or report) only extreme cases of performance
rather than the full distribution of observed cases. Moreover, the alternative
of carrying out group analyses of large patient groups is also problematic
due to individual differences in lesion characteristics and in the distribution
of cognitive processes in the brain (Caramazza, 1986). Perhaps the best
compromise is offered by a case series approach, in which behavioural
effects are replicated across a series of patients with common aetiology (e.g.
Lambon-Ralph, Patterson, & Graham, 2003; Patterson et al., 2006; Rogers,
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Lambon-Ralph, Hodges, & Patterson, 2004; Woollams, Lambon-Ralph,
Hodges, & Patterson, 2005). On this perspective, atypical findings from sin-
gle-case studies (e.g. Blazely et al., 2005; Derouesne & Beauvois, 1985)
must be viewed with scepticism until replicated in the context of studies that
assess a broader range of impaired performance, and theories or models that
explain how the full range of cases arises.

Conclusions

The dual-route and PDP approaches to understanding word reading are
both supported by explicit computational simulations, but the role that these
simulations play in theory development in the two cases is strikingly different.
The DRC model of Coltheart et al. (2001) continues the long tradition of
a bottom-up, data-driven approach to modelling: A model is designed to
account for specific behavioural findings, and its match to those findings is
the sole basis for evaluating it. These models aspire to what Chomsky (1965)
called “descriptive adequacy”. The PDP approach is different. The models
are only a means to an end. The goal is a theory that explains behaviour (such
as reading) and its brain bases. The models are a tool for developing and
exploring the implications of a set of hypotheses concerning the neural basis
of cognitive processing. Models are judged not only with respect to their
ability to account for robust findings in a particular domain but also with
respect to considerations that extend well beyond any single domain. These
include the extent to which the same underlying computational principles
apply across domains, the extent to which these principles can unify phenom-
ena previously thought to be governed by different principles, the ability of
the models to explain how behaviour might arise from a neurophysiological
substrate, and so on. The models (and the theories they imperfectly instanti-
ate) aspire to what Chomsky termed “explanatory adequacy”. The deeper
explanatory force derives from the fact that the architecture, learning, and
processing mechanisms are independently motivated (as by facts about the
brain) rather than introduced in response to particular phenomena.*

The data-fitting approach appears to be better suited to capturing the
results of individual studies, because that is the major goal of the approach.
DRC thus seems satisfying because it accords with the intuition that account-
ing for a broad range of behavioural phenomena is always a good thing.
Examining DRC more closely, however, suggests two fundamental problems
with this strategy. First, the extent to which a model developed in this manner
actually fits the data is questionable; fitting the results of one study but not
others out of a series is problematic, as are parameter changes that fix one
problem but create others. The long list of phenomena that DRC is said to
account for needs to be assessed in light of these considerations. The second
problem is that the short-term strategy of fitting models to data may in fact
contravene the longer-term goal of uncovering fundamental principles. To
use an economic metaphor, moves that maximize short-term profits (that is,
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fitting more data) may conflict with achieving longer-term economic growth
(addressing additional phenomena) and prosperity (converging on the correct
theory).

Whereas the DRC approach is data driven, the PDP approach is more
theory driven because the models derive from a set of principles concerning
neural computation and behaviour. The models are responsive to data insofar
as they need to capture patterns that reflect basic characteristic of people’s
behaviour, particularly with regard to phenomena, such as consistency effects,
that distinguish between theories, given their current states of development.
The primary goal is not to implement the model that fits the most possible
data; rather, it is to use evidence provided by the model, in conjunction
with other evidence (such as about brain organization or neurophysiology,
or about other types of behaviour) to converge on the correct theory of the
phenomena.

The PDP approach to modelling is frustrating to some because there is
no single simulation that constitutes the model of the domain. The models
seem like a moving target: SM89 was interesting but ultimately limited by its
phonological representation; PMSP96 largely fixed the phonological problem
but introduced the idea that the orth:sem:phon pathway also contributes to
pronunciation, something SM89 had not considered. Harm and Seidenberg
(1999) used yet another phonological representation and focused on develop-
mental phenomena; Harm and Seidenberg (2004) implemented both orth:sem
and orth:phon:sem parts of the triangle but focused on data concerning
activation of meaning rather than pronunciation, etc. Each model shares
something with all of the others, namely the computational principles dis-
cussed above, but each model differs as well. Where, then, is the integrative
model that puts the pieces all together?

The answer is, there is none and there is not likely to be one. The concept
of a complete, integrative model is a non sequitur, given the nature of the
modelling methodology—particularly the need to limit the scope of a model
in order (a) to gain interpretable insights from it and (b) to complete a
modelling project before the modeller loses interest or dies. The goal of the
enterprise, as in the rest of science, is the development of a general theory
that abstracts away from details of the phenomena to reveal general, funda-
mental principles (Putnam, 1973). Each model serves to explore a part of
this theory-in-progress.

The proponents of DRC view these issues differently. In addition to the
data-driven tenet, they emphasize that modelling should be “cumulative”,
with each successive model addressing the same phenomena as previous
models, and new ones as well. Thus each model is a superset of the preceding
ones. Here two questions arise. The narrow one is whether the dual-route
framework is actually cumulative in the described sense. The second is whether
any science proceeds in this manner. At first glance, the 2001 version of the
DRC appears to be an extension of the 1993 version. In actuality, a variety
of changes were made to parameter values and processing assumptions that
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render the relationship between the models far more complicated than the
“nested” idea suggests. Certainly the two models share core assumptions
about the nature of lexical versus sublexical processing, but they differ in
the details of how these are implemented. Nor are the models strictly cumula-
tive with respect to the empirical phenomena addressed: for example, the
DRC models have used versions of the McClelland and Rumelhart (1981)
interactive-activation model as the “lexical” component, and Coltheart et al.
(2001) emphasize this genealogy. However, they did not develop DRC by
first showing that it accounted for the same phenomena as the IA model
(concerning, for example, word superiority effects) and then go on to show
that it accounted for others as well.

This situation is not all that different from the relationship among succes-
sive versions of the triangle model (Harm & Seidenberg, 1999, 2004; Plaut
et al., 1996; Seidenberg & McClelland, 1989): they share a common set of
assumptions concerning the architecture of the reading system and basic
learning mechanisms, and differ in specific (but important) implementational
details. Like DRC, the models address different but overlapping sets of
behavioural phenomena and thus are not strictly cumulative.

Whether science proceeds in the cumulative, nested manner described by
Grainger and Jacobs (1998) and endorsed by Coltheart et al. (2001) has been
strongly questioned, in different ways, by Kuhn (1962) Feyerabend (1975),
Lakatos (1970), and many others. Even within the narrower confines of
cognitive psychology, it is hard to point to a single example of a series of
models that were developed in this strictly cumulative manner. By contrast,
it is easy to identify cases in which researchers have developed a series of
models that share common principles but differ in detail and address over-
lapping but nonidentical phenomena (e.g. Roger Ratcliff’s diffusion models
and John Anderson’s ACT models). In short, science does not conform to an
incremental, cumulative pattern, nor has the development of the dual-route
model.

Finally, Rastle and Coltheart (this volume) disparage the exploration of
general principles characteristic of the PDP approach as a matter of “faith”
and instead endorse modelling on the basis of “inference from evidence”. The
first of these assertions reflects confusion about our models, and the second
confusion about their own. As we noted above, the “principles” that underlie
the PDP approach are hypotheses about behaviour and its brain bases. These
principles could be proved wrong (via normal scientific methods), in which
case they would (and inevitably will) be modified. Whether the principles
are correct is thus a question of fact, not an assertion of faith. The second
assertion—that models should be developed wholly in response to data—
does not accurately characterize the development of scientific theories in
general or DRC in particular. Unless science is construed as random fact
gathering in the manner of Francis Bacon, empirical studies are invariably
conducted in a theoretical context. How did reading researchers decide that it
was important to look at words with regular versus irregular pronunciations?
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Words do not come labelled as “regular” or “irregular”; the distinction
already assumes a nascent theory of the relationships between spelling and
sound. In practice, science involves working back and forth between theory
and data, with theories guiding what data to gather and the data feeding back
on development of the theory. What Rastle and Coltheart apparently mean is
that it is valid to introduce an element into a theory (or model) in response
to specific findings. We have argued that this is ill-advised for many reasons.
Such elements are literally ad hoc: “for the particular end or case at hand
without consideration of wider application” (Merriam-Webster Dictionary).
This leads to the over-fitting problem discussed above, a failure to capture
generalizations within the target domain. It also leads to failures to capture
generalizations that hold across domains—aspects of knowledge representa-
tion, learning, and processing that are not specific to reading at all. That
reading exists at all is due to the fact that it exploits capacities that evolved for
other purposes. Hence our emphasis on looking for principles that govern
perception, cognition, learning, and their brain bases. Advances in under-
standing these principles can then facilitate understanding specific tasks such
as reading.

Computational modelling has contributed significantly to our understand-
ing of word reading, but considerable work remains to be done. Even basic
issues, such as how spelling-sound knowledge is represented and applied, and
its relation to lexical and semantic knowledge, remain unresolved. In such a
context, it is premature to focus on the degree to which existing models fit
specific empirical findings. Rather, the greatest progress will come from a
broader perspective that attempts to integrate the study of word reading
into the more general enterprise to elucidate the neural basis of cognitive
processes. In this regard, the PDP approach to modelling—quite apart from
the strengths and limitations of existing models—has much to offer.
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Notes

1 Note that we are not asserting that a model has to be tested against every study of
a given phenomenon that has appeared in the literature. Experiments often yield
varying results, for a variety of reasons. Some studies are clear outliers, insofar as
they fail to replicate, or are contradicted by, multiple other studies. Some studies
yield results that may be valid but have not been replicated, and so their status is
unclear. It is appropriate to omit outliers and unclear cases in testing a model.
However, it would not be appropriate to select studies on the basis of whether a
model simulates them correctly or not. The safest strategy is to focus on robust
phenomena that have replicated in multiple studies.

2 Coltheart et al.’s simulation of Jared’s (1997) study is problematic. They asserted
that consistency effects in studies such as hers were due to two confounding factors:
the inconsistent words included some items that DRC treats as exceptions, and
included more words that create “whammies”, temporary misapplications of rules
based on a left-to-right pass through the word. However, when the suspect items
are removed, the consistency effect remains in Jared’s data, but not in the DRC
simulation.

3 The concept of “localist representation” engenders some confusion. A repre-
sentation is localist or distributed only with respect to a specific set of entities.
For example, in McClelland and Rumelhart’s interactive activation model, the
representations at the letter level are localist with respect to letters but distri-
buted with respect to words; the same is true of DRC. A PDP model such as
that of Harm and Seidenberg (2004) used localist representations of letters in
orthography, but distributed representations for words in orthography, phonology,
and semantics. The contrast is not between models employing localist versus
distributed representations, since all of the above models include both. Rather,
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DRC is committed to the narrower claim that there are localist representations
of words.

4 The usefulness of the distinction between descriptive and explanatory adequacy is
distinct from questions concerning the extent to which Chomsky’s own theories
achieve these goals.



