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Nonword Pronunciation and Models of Word Recognition

Mark S. Seidenberg, David C. Plaut, Alan S. Petersen, James L. McClelland, and Ken McRae

Nonword pronunciation is a form of generalization behavior that has been at the center of debates
about models of word recognition, the role of rules in explaining behavior, and the adequacy of the
parallel distributed processing approach. An experiment yielded data concerning the pronunciation
of a large corpus of nonwords. The data were then used to assess 2 models of naming: a model
developed by D. C. Plaut and J. L. McClelland (1993), which is similar to the one described by
M. S. Seidenberg and J. L. McClelland (1989) but uses improved orthographic and phonological
representations, and the grapheme-phoneme correspondence rules of M. Coltheart, B. Curtis, P.
Atkins, and M. Haller's (1993) dual-route model. Both models generate plausible nonword
pronunciations and match subjects' responses accurately. The dual-route model does so by using
rules that generate correct output for most words but mispronounce a significant number of
exceptions. The parallel distributed processing model does so by finding a set of weights that allow
it to generate correct output for both "rule-governed" items and exceptions. Some ways in which
the two approaches differ and other issues facing them are also discussed.

The task of reading words and nonwords aloud has played
a central role in the development of models of word recog-
nition. Reading makes use of knowledge concerning the
correspondences between the orthographic and phonologi-
cal forms of words. This information is used in recognizing
words and pronouncing them aloud (see Seidenberg, in
press, for a review). Current models differ in their assump-
tions about how this knowledge is acquired, represented,
and used. Dual-route models assume that there are separate
lexical and sublexical procedures for generating pronunci-
ations (for an overview, see Patterson & Coltheart, 1987; for
critiques, see Humphreys & Evett, 1985, and Van Orden,
Pennington, & Stone, 1990). The specific version of the
dual-route model developed by Coltheart and his colleagues
(Coltheart, 1978,1987; Coltheart, Curtis, Atkins, & Haller,
1993) assumes that in alphabetic writing systems, knowl-
edge of the correspondences between orthography and pho-
nology is represented in terms of rules translating graph-
emes into phonemes. The rules are used in naming words
whose pronunciations they correctly specify (sometimes
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called "regular" words). Words whose pronunciations vio-
late the rules ("exceptions" such as HAVE, PINT, and GONE)
must be pronounced by means of a separate lexical (or
word-specific) pronunciation mechanism.

The fact that people are able to pronounce novel, non-
word letter strings such as NUST and MAVE has been taken as
further evidence for the hypothetical grapheme-phoneme
correspondence (GPC) rules. The ability to generalize has
provided the classic source of evidence for mental rules. For
example, the fact that the children in Berko's (1958) famous
experiment correctly used novel forms such as WUGS ("this
is a WUG, here are two .") was taken as evidence that they
had learned a rule of plural formation. By the same reason-
ing, people's ability to pronounce NUST as a rhyme of MUST
and DUST has been taken as indicating that they have ac-
quired GPC rules. These rules play other roles in the dual-
route model as well. Acquisition of the rules is thought to be
an early step in learning to read; poor knowledge of the
rules is associated with failures to acquire age-appropriate
reading skills, and the acquired reading disorder phonolog-
ical dyslexia is thought to reflect the loss of these rules due
to brain injury (Castles & Coltheart, 1993; Coltheart, 1987).
Coltheart et al. (1993) recently described an algorithm for
inducing a set of grapheme-phoneme rules and using them
to pronounce words and nonwords. The rules generate cor-
rect output for about 78% of the 2,897 monosyllabic words
in a corpus developed by Seidenberg and McClelland
(1989); they also generate plausible output for nonwords.

Connectionist (or "parallel distributed processing") mod-
els have challenged this view by providing an alternative to
the assumption that regularities can only be represented in
terms of rules. Networks using distributed representations,
weighted connections between units, and error-minimiza-
tion learning algorithms can encode both "rule-governed"
cases and "exceptions." For example, simple feedforward
networks such as the ones described by Sejnowski and
Rosenberg (1987) and Seidenberg and McClelland (1989)
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took orthographic patterns as input and produced phonolog-
ical codes as output. The models learned to produce correct
output for large vocabularies of words, including regular-
irregular pairs such as GAVE-HAVE and BONE-GONE.

These models also provide an alternative view of the
bases of generalization: The information concerning
spelling-sound correspondences derived from exposure to
actual words and encoded by the weights in such networks
is also used in generating pronunciations for unfamiliar
stimuli. For example, given simple nonwords on which it
had not been trained such as MUST or FIKE as input, Seiden-
berg and McClelland's model (1989) produced the pronun-
ciations that people generate as output. The model thereby
challenged what Seidenberg (1989) called the "central
dogma" of dual-route models: that separate mechanisms
(rules and lexical lookup) are needed for pronouncing non-
words and exceptions. Seidenberg and McClelland's model
replaced the two naming mechanisms that were integral to
the dual-route model with a single mechanism using
weights on connections between units.

As Besner, Twilley, McCann, and Seergobin (1990)
noted, the model did not perform as well as people on
nonwords, especially ones such as JINJE, FAIJE, and TUNCE that
contain unusual spelling patterns. In light of the fact that
nonword pronunciation has been taken as evidence for
pronunciation rules, this defect is potentially important.
Deviations in the model's nonword performance could be
taken as evidence that rules are needed in order to achieve
humanlike performance, as Besner et al. (1990) and Colt-
heart et al. (1993) concluded. They have further claimed
that basic limitations on the capacities of neural networks
preclude their being able to generate correct output for both
regular and irregular words while maintaining good gener-
alization. Pinker and his colleagues (Pinker, 1991; Prasada
& Pinker, 1993) have drawn the same conclusion from
connectionist models of the past tense.

The limitations of simulation models need to be evaluated
carefully, however. All such models are restricted in scope,
ensuring that their behavior will deviate from that of people
at some level of precision. The fact that a model's perfor-
mance differs from people's does not itself reveal whether
the limitations derive from defects in the theory on which
the model is based or from details of the implementation
that are not theory relevant. The behavior of the model—-
how it both corresponds to and deviates from human be-
havior—needs to be interpreted in light of the principles that
govern its performance. This can be achieved by drawing on
foundational research on the properties of such networks, by
performing careful analyses of the network, and by exper-
imenting with other networks designed to solve similar
kinds of problems (see Plaut & Shallice, 1993, and Seiden-
berg, 1989, 1993, for discussions).

Drawing on the first two of these sources of information,
Seidenberg and McClelland (1990) noted that the perfor-
mance of their model was limited by at least two major
factors: the size of the training corpus and the properties of
the phonological representation that were used. The training
corpus was 2,897 monosyllabic words, which is an order
of magnitude smaller than a skilled reader's vocabulary.

The corpus represented a sample out of the space of
orthographic-phonological correspondences in English.
The model performed well on nonwords that included these
correspondences. Increasing the size of the sample would
result in better coverage of this space, improving the
model's performance on generalization trials. These obser-
vations suggest that good performance on simple nonwords
such as FIKE and poorer performance on difficult nonwords
such as FAIJE is what might be expected of a person who had
acquired only a relatively small vocabulary. This could then
be taken as a good example of a practical limitation on an
implementation whose theoretical implications are minimal.

Coltheart et al. (1993) have challenged these observations
about the effects of corpus size. Their algorithm induced a
set of pronunciation rules on the basis of exposure to the
same 2,897-word corpus that Seidenberg and McClelland
(1989) used. The rules yielded significantly better perfor-
mance on difficult nonwords such as FAIJE. Hence, Coltheart
et al. concluded that the flaws in the Seidenberg and
McClelland model could not be due to simply the size of the
training corpus. This argument is not valid, however. The
fact that rules sufficient to support the pronunciation of
difficult nonwords can be induced from the 2,897-word
corpus is orthogonal to the effects of corpus size on the
network. The two models are being asked to solve very
different problems and are affected by different factors. The
Coltheart et al. algorithm has to induce rules that generate
accurate output for nonwords but are allowed to err on many
words because these items can be treated as exceptions and
pronounced by a separate lexical processing mechanism.
The network, by contrast, must perform the more difficult
task of generating correct output for both regular and irreg-
ular words as well as nonwords. A 2,897-word vocabulary
might be sufficient for the first task but not the second.1

The second limitation noted by Seidenberg and McClel-
land (1990) concerned the phonological representation that
was used. This representation was constructed according to
basic principles concerning distributed representations that
were relevant to the theoretical claims being offered. The
main principle was that words with similar phonological
codes should activate similar patterns over the phonological
units, and analogously for the orthographic units. Con-
structed in this way, the representation was sufficient to
allow exploration of many issues concerning the mapping
between orthography and phonology, but it was not a com-
plete phonological system. Its defects became apparent at
the limits of the model's performance: pronouncing non-
words such as JINJE and FAIJE. In such cases the model

1 Note that the claim is not that performance would improve
because all of the correspondences contained in nonwords such as
FAIJE or TUNCE would necessarily be found in the larger corpus.
Looking at the Kucera and Francis (1967) corpus, for example,
there are no -AIJE words at all. Some additional low-frequency
correspondences will be found in a larger corpus, however (e.g., it
might include DUNCE, which was not in Seidenberg and McClel-
land's, 1989, list), as would other correspondences that provide
information relevant to patterns such as -AIJE by containing parts of
them.
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sometimes produced small deviations from correct targets.
Plaut, McClelland, Seidenberg, and Patterson (1994)
pointed out that the two issues discussed by Seidenberg and
McClelland (1990)—the size of the corpus and the ade-
quacy of the phonological representation—are not indepen-
dent. Achieving an adequate level of performance while
using a relatively coarse phonological representation may
require exposure to a broader range of exemplars. Con-
versely, using a phonological representation that captures
more of the relevant distinctions may afford this level of
performance with a smaller corpus.

In summary, the issues that have arisen in connection
with the task of naming nonwords aloud carry broader
implications concerning the adequacy of connectionist mod-
els, the role of rules in human behavior, and the bases of the
capacity to generalize. In this article we provide new infor-
mation bearing on these issues. We first describe the results
of a large-scale behavioral experiment on nonword naming.
This experiment provides a rich set of data that is then used
to assess two models: the parallel distributed processing
(PDF) model described by Plaut and McClelland (1993),
which used improved orthographic and phonological repre-
sentations, and the Coltheart et al. (1993) GPC rules. The
principal goal of these analyses was to assess the validity of
the claim that connectionist models cannot generate correct
output for both nonwords and exceptions at a sufficiently
high level of accuracy and the corollary that two mecha-
nisms, one of which uses pronunciation rules, are necessary.

The Experiment

Method

Subjects. The subjects were 24 McGill University undergrad-
uates, native speakers of Canadian English, who were paid for
participation.

Stimuli. The stimuli were monosyllabic nonwords created from
590 different word bodies (rimes) found in the 2,897 word corpus
used by Seidenberg and McClelland (1989). The word bodies (e.g.,
-ANT, -OWN, -ANCE) were paired with onsets (single consonants or
consonant clusters) to form nonwords. The entire set of stimuli is
listed in the Appendix. The data for 10 additional items were
deleted because of experimenter errors that resulted in missing
scores. The items were divided into three randomized lists. Each
subject was presented with all lists, with order of lists counterbal-
anced across subjects. There was also a list of 12 practice items,
using word bodies that did not occur in the test stimuli.

Procedure. Stimuli were presented one at a time with a 2-s
intertrial interval on an IBM PS2 Model 80 PC in a dimly lit room.
Subjects were informed that the stimuli were nonwords and told to
pronounce them as if they were words. They were given the
practice list with feedback about their performance and then the
three lists of test stimuli without any feedback. Subjects sat at a
comfortable distance from the computer and spoke their responses
into a microphone connected to a voice key interfaced to the
computer. The experimenter, a speaker of Canadian English, re-
corded subjects' pronunciations by hand using the phonetic tran-
scription given in the Appendix. With short breaks between
blocks, the experiment took about 1 hr to run.

Results

Fewer than 1% of the trials were lost due to equipment
malfunctions. Naming latencies more than 2 SDs above a
subject's mean (1.3%) were replaced with the 2-SD value.
Data were analyzed in terms of the number of pronuncia-
tions per nonword and the latencies associated with differ-
ent pronunciations.

The nonwords varied in terms of the number of pronun-
ciations they elicited across subjects. As Figure 1 indicates,
subjects produced a single pronunciation for 34.7% of the
items; another 45.9% elicited two pronunciations, 16.9%
three pronunciations, and 2.5% four or more pronuncia-
tions. The last group included many pronunciations that
were produced by only 1 or 2 subjects. These low-frequency
responses consisted of both uncommon but possibly in-
tended pronunciations and true errors. Because the line
between these two types of responses is unclear (e.g., is
/brat/ a mispronunciation of BREAT or a pronunciation by
analogy to YEAH?), we categorized them together as "other"
responses.2

Data concerning the frequencies of the alternative pro-
nunciations indicate that although many items yielded mul-
tiple pronunciations, subjects nonetheless showed consider-
able agreement. The most common pronunciation for each
nonword accounted for 83.7% of all responses. The second
most common pronunciation accounted for an additional
9%. Thus, the two most common pronunciations accounted
for more than 90% of the responses.

Naming latencies varied as a function of two factors: (a)
the number of pronunciations that the item generated across
subjects and (b) the frequency with which the pronunciation
was generated across subjects. Table 1 provides data indi-
cating how the generation of the most common pronuncia-
tion was affected by the availability of alternative pronun-
ciations. Two hundred six items yielded only a single
pronunciation each, with a mean latency of 656 ms. Two
hundred sixty-nine items yielded two pronunciations across
subjects. The mean naming latency for the dominant pro-
nunciation, generated by 83.4% of the subjects, was 692 ms.
For the 100 items that generated three pronunciations, the
dominant pronunciation accounted for 60.7% of the re-
sponses, with a mean latency of 744 ms. Thus, the latency
to produce the dominant pronunciation increased as a func-
tion of the number of alternative pronunciations. According
to the dual-route model, subjects generate nonwords by
applying GPC rules. The fact that different pronunciations
are generated across subjects can be explained by assuming
that they have slightly different rule sets. However, the data
indicate that generating the most common, "rule-governed"
pronunciation of a nonword was affected by the existence of
alternative pronunciations. This effect reflects the degree of
consistency in the mapping between spelling and pronunci-
ation. As Glushko (1979) originally noted, the pronuncia-
tion of a word or nonword is affected by the degree of
consistency among the pronunciations of its neighbors.

2 The key to the pronunciation symbols can be found at the end
of the Appendix.
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Another way to observe this consistency effect is to look
at the latencies associated with the first, second, and third
most common pronunciations (see Table 2). Consider first
the most common pronunciation for each of the 590 items.
The mean latency for these pronunciations was 689 ms. For
384 items, subjects produced two or more pronunciations.
Looking at the second most common pronunciation for
these items, the mean latency was 715 ms. Similarly, for the
115 items that yielded three or more pronunciations, the
mean naming latency for the third most common pronunci-
ation was 783 ms. These data indicate that subjects' pro-
nunciations were influenced by their knowledge of alterna-
tive pronunciations. Subjects not only generated atypical
pronunciations on some trials, but they took longer to do so,
suggesting that pronunciations were slowed by competition
from neighbors with other pronunciations (see also Taraban
& McClelland, 1987).

In summary, the experiment yielded orderly nonword
naming data that replicate and extend earlier findings. The
data are being made available electronically and can be used
by other researchers in testing additional hypotheses and
models.

Assessment of the Two Models

We now consider how subjects' performance relates to
that of the two models. We first provide brief descriptions of
the models and how the data were scored.

The Plaut and McClelland (1993) Model

The Plaut and McClelland (1993) model is a network that
like Seidenberg and McClelland's (1989) model, performed
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Figure I. Number of pronunciations generated by each non-
word.

Table 1
Naming Latency as a Function of Number of
Alternative Pronunciations

No. given
and variable

Pronunciations

First Second Third Model

One
RT 656 (3.6) 2.503 (.032)
% 97.1
n 206
% Errors 2.9

Two
RT 692(4.1) 700(8.6) 2.699 (.031)
% 83.4 12.1
n 269
% Errors 4.5

Three
RT 744(8.1) 753(10.7) 787(18.7) 2.901 (.053)
% 60.7 23.4 10.4
n 100
% Errors 5.6

Note. No. given refers to number of pronunciations given for a
nonword across subjects. For example, 269 items yielded two
pronunciations, with mean naming latencies for each pronuncia-
tion as indicated. Model column indicates mean settling time and
standard error (in parentheses). RT = reaction time (naming la-
tency in milliseconds) and standard error (in parentheses); % =
percentage of correct responses; n = number of items.

the task of generating phonological codes from orthographic
input. The principal difference between the two models
relates to the introduction of improved orthographic and
phonological representations. Other modifications that took
advantage of the availability of increased computational
resources as well as progress since 1989 in neural network
theory were also introduced.

Network architecture. The architecture of Plaut and
McClelland's (1993) network is shown in Figure 2. The
network has three layers of units: 108 grapheme units, 100
hidden units, and 57 phoneme units. The grapheme units are
fully connected to the hidden units, and the hidden and
phoneme units are fully inter- and intraconnected. Each
connection has a positive or negative real-valued weight
that changes over the course of learning. In addition, as is
standard in connectionist modeling, each hidden and pho-
neme unit has a bias value that determines the unit's default
tendency to be on or off in the absence of contributions from
other units (see Bechtel & Abrahamsen, 1991, for a discus-
sion). This bias can be implemented as the weight on an
additional connection from an extra unit that is always
active. In this way, bias values can be learned in exactly the
same way as all other weights in the network. Including
the bias connections, the network has a total of 23,203
connections.3

3 The grapheme units are not interconnected because, in the
simulation, their states are completely determined by the input to
the network. In a more realistic implementation of the visual
processes involved in reading, grapheme units would become
active gradually over time on the basis of more primitive visual
information represented at even earlier levels of the system.
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Each unit in the network has an activity level or state,
ranging between 0.0 and 1.0, and each connection from one
unit to another has a real-valued weight that can be positive
or negative. In a standard connectionist network, the state Sj
of each unit j is a smooth, nonlinear (logistic) function tr(')
of its summed input x} from other units:

<">* (1)

(2)

57 phoneme units

s, = <T(XJ) =1 J l

where w{j is the weight from unit i to unity and exp(-) is the
exponential function. In the current network, the states of
units change gradually over time. Specifically, the new state
of unit j at time t + T, s/'+Tl, is a weighted average of its
current state at time t and the state dictated by its summed
input:

fY] /*j\rwii (3)

where T is the weighting proportion that determines how
gradually the states of units change and a{-) is the standard
nonlinear unit function shown in Equation 2. For T = 1, the
second term in Equation 4 is zero and the units function as
in a standard network (cf. Equation 2). As T approaches
zero, the network can be viewed as an increasingly close
discrete approximation to a system that is continuous in
time.

Representations. Letter strings are represented by spe-
cific patterns of activity over the input graphemic units, and
monosyllabic pronunciations are represented over the out-
put phonemic units. The orthographic and phonological
representations in the model were designed to address some
of the limitations of earlier approaches. The representations
used by Seidenberg and McClelland (1989) suffered what
Plaut et al. (1994) termed a "dispersion" problem. The
information that was relevant to a particular phoneme in a
particular position was dispersed over different units (i.e.,
over the different Wickelphone units that the phoneme
activated).4 One type of representation that does not suffer
from this problem involves using position-specific repre-

Table 2
Data as a Function of Pronunciation Frequency

Pron n Latency (ms)

590
384
115
15

689
715
783
752

Note. Pron refers to the frequency with which a pronunciation
was given. Pron 1 is based on the most common pronunciation for
every nonword. Pron 2 is based on the second most common
pronunciation for the 384 items that yielded two or more pronun-
ciations, and so on.

1
100 hidden units

108 grapheme units J

Figure 2. Architecture of the Plaut and McClelland (1993)
model.

sentations (McClelland & Rumelhart, 1981). However, this
requires repeating phonemes at every position, which intro-
duces other problems. For example, the representation of
any given word becomes extremely sparse, and there is
nothing relating occurrences of the same phoneme across
different positions (thus, the bs in BAT and TAB would be
treated as unrelated). The representation used here is a
compromise that involves syllabic rather than phonemic
positions: onset, nucleus, and coda. These syllabic units
play a central role in phonological theories (e.g., Selkirk,
1982), speech errors (e.g., Dell, 1986), and the acquisition
of reading skill (Treiman, 1992). Each unit represents a
particular grapheme or phoneme within one of these posi-
tions (see Table 3). Graphemes can be either single letters or
multiletter "relational units" (Venezky, 1970) that have a
specific phonological correspondence (e.g., PH —» /f/). As
the parsing of letter strings into graphemes is ambiguous in
the general case (e.g., TOPHAT vs. CELLOPHANE), all possible
graphemes within a string are activated, including the com-
ponents of multiletter graphemes (e.g., p, H, and PH).

The phonotactic constraints on which sequences of pho-
nemes create well-formed monosyllabic pronunciations in
English dictate that the identities of phonemes within each
cluster are sufficient to determine their ordering (as re-
flected in Table 3). The only violations to this generalization
involve /s/ and /p/, HI, or /k/ in the coda (e.g., CLASP vs.
LAPSE). Three additional units—/ps/, /ks/, and/ts/—are re-
quired to handle these cases. The treatment of these units is
analogous to that of multiletter graphemes in that their
presence is indicated by the simultaneous activation of the
affricate unit and the units representing its component pho-
nemes. Additional motivation for these units is provided by
the observation that these combinations are sometimes
treated as single phonemes, called affricates, and sometimes
written with single letters (e.g., English X, Greek ̂ ). Anal-
ogous orthotactic constraints ensure that the ordering of
letters within a string is unambiguously represented by the
identities of its graphemes within each orthographic conso-
nant and vowel cluster.

4 Seidenberg and McClelland's (1989) phonological representa-
tion was the "Wickelphonology" developed by Rumelhart and
McClelland (1986). The orthographic representation was devel-
oped specifically for their model.
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Table 3
Orthographic and Phonological Representations

Syllabic position Type of unit

Phonological3

Onset
Vowel
Coda

Orthographical
Onset

Vowel

Coda

s b p d t g k f v z T D S Z l r w m n h y
a @ e i o u A E I O U W Y ~
r l m n N b g d p s k s t s s f v p k t z S Z T D

Y S P T K Q C B D G F V J Z L M N R W H U C H G H G N G U P H P S
QU RH SH TH TS WH

E I O U A Y AI AU AW AY EA EE El EU EW EY IE OA OE OI OO OU
OW OY UE UI UY

H R L M N B D G C X F V J S Z P T K BB CH CK DD DG FF GG GH
ON GU KS LL NG NN PH PP PS QU RR SH SL SS TCH TH TS TT ZZ
BBS ED

Note. Symbols are from "Generalization with componential attractors: Word and nonword reading
in an attractor network" (pp. 824-829), by D. C. Plaut and J. L. McClelland, 1993, in Proceedings
of the Fifteenth Annual Conference of the Cognitive Science Society, Hillsdale, NJ: Erlbaum.
Copyright 1993 by Erlbaum. Adapted by permission.
" /a/ in POT, l@l in CAT, /e/ in BED, HI in HIT, /o/ in DOG, /u/ in GOOD, /A/ in MAKE, /E/ in KEEP, /I/ in
BIKE, /O/ in HOPE, /U/ in BOOT, /W/ in NOW, /Y/ in BOY, /"/ in CUP, /N/ in RING, /S/ in SHE, /Z/ in BEIGE,
/T/ in THIN, /D/ in THIS.

Training procedure. The training corpus consisted of
the 2,897 monosyllabic words in the Seidenberg and
McClelland (1989) corpus, augmented with 101 words
missing from that corpus but used as stimuli in various
behavioral studies. The corpus also included patterns con-
sisting of each grapheme in isolation and the corresponding
phonemes. The reasoning here was that the model should be
explicitly trained on these correspondences because chil-
dren typically are taught them in the course of learning to
read. As it turns out, omitting this training on isolated GPCs
has little impact on network performance (see Plaut et al.,
1994).5

An input string is presented to the network by clamping
the states of the appropriate grapheme units. The network is
given a fixed amount of time to process the input (t = 0.0-
3.0), during which the units change their states gradually
according to Equations 3 and 4 (with T = 0.5). The net-
work's performance at each point in time was measured by
the cross-entropy (Hinton, 1989; Kullback & Leibler, 1951)
of the phoneme units' activities with their target activities
for this input:

CW = _ log2(,.M) iog2(l - (5)

where j indexes phoneme units and /, is the target for each.
Like the more standard total sum of squared error measure,
cross-entropy is a measure of the difference between the
phoneme states generated by the network and their correct
(target) states for each word. Cross-entropy is a more ap-
propriate error measure when the state of each output unit
can be interpreted as the probability that a particular hy-
pothesis is true (Rumelhart, Durbin, Golden, & Chauvin, in
press). This applies to the current task, as each phoneme
unit corresponds to the hypothesis that a particular phoneme
is present in the network's response. More formally, the
states of phoneme units, when interpreted as independent

probabilities, define a probability distribution over all pos-
sible responses. The targets of phoneme units define another
probability distribution (although, if all targets are either 0
or 1, the distribution simply assigns a probability of 1 to a
particular response). Cross-entropy measures the informa-
tion-theoretic distance between these two probability distri-
butions (Kullback & Leibler, 1951).

In order to encourage the network to be correct as quickly
as possible, the magnitude of the cross-entropy error was
weighted to gradually increase over time. Specifically, the
weighting was set to 0.0 until t = 1 and then linearly
increased, reaching 1.0 at the end of settling (t — 3). Also,
the network was halted and received no more error once it
succeeded in activating all phonemes to within 0.2 of their
correct values. Words satisfying this criterion were guaran-
teed to be pronounced correctly given the procedure for
generating responses from phonological activity, described
below.

The weights on all connections were initialized to small
random values. As a result, at the beginning of training, the
phoneme activations generated by the network for each
word were much different from the correct activations for
the word (i.e., the cross-entropy error was high). A version
of backpropagation through time (Rumelhart, Hinton, &
Williams, 1986; Williams & Peng, 1990) adapted for con-
tinuous units (Pearlmutter, 1989) was used to compute how
to change each weight so as to reduce the error on each
word (see Plaut et al., 1994, for details). The procedure is

5 Strictly speaking, children cannot be taught the correspon-
dences of nonfricative consonants in isolation because the pronun-
ciation of such consonants must be followed at least by a neutral
vowel (/"/ in our notation; see Table 3). However, because the
variation across the pronunciations of such minimal syllables is
attributable almost entirely to the consonant itself, the effects of
training directly on such syllables would be equivalent to training
on the isolated correspondences of the consonants themselves.
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essentially the same as standard backpropagation except
that rather than receiving error in a single backward pass
through the network, units gradually accumulate error in the
same way as they accumulate activity in the forward pass
(see Equation 3). The weight changes induced by each word
were scaled by a logarithmic compression of its frequency
of occurrence (Kucera & Francis, 1967). In the limit of
small weight changes, this is equivalent to using frequency
to alter the number of times a word is presented during
training (cf. Seidenberg & McClelland, 1989), and it en-
ables the use of a procedure for adapting the learning rate of
each connection independently (Jacobs, 1988). It also has
the advantage of allowing the use of any range of frequen-
cies (see Plaut et al., 1994, for simulations involving train-
ing with actual word frequencies). During each epoch of
training, the scaled weight changes are accumulated for
each word in the training corpus in turn, at which point the
weights are actually changed and the process is repeated.
Thus, the training procedure only approximates the more
psychologically appropriate but less computationally trac-
table procedure of updating the weights after each word
presentation.

Testing procedure. A major advantage of the current
phonological representation over that used by Seidenberg
and McClelland (1989) is that it is completely straightfor-
ward to determine the pronunciation the network gives to
any letter string. The ordering of phonemes in Table 3
embodies the relevant phonotactic constraints, although the
network is insensitive to this ordering. Accordingly, the
response of the network to any orthographic input can be
determined simply by activating the appropriate grapheme

units, running the network as described earlier, and then
scanning the phonemes in left-to-right order and concate-
nating all active phonemes. For consonants, this was all
phonemes with activity above 0.5. Because each monosyl-
labic pronunciation must contain exactly one vowel, only
the most active vowel phoneme was included in the re-
sponse. If the units for an affricate and each of its compo-
nent phonemes are active (e.g., /ps/, /s/, and /p/), then the
order of the components in the response is reversed from
their standard order (e.g., /ps/ rather than /sp/).

The Coltheart et al. (1993) Rules

Deriving the rules. Coltheart et al. (1993) derived 144
GPC rules from the 2,897 words used by Seidenberg and
McClelland (1989). Examples of the rules are given in
Table 4. The rules were derived by the following method.
Words were presented in random order. For each word, the
algorithm inferred the GPC rules that describe the relation-
ship between that word's orthography and phonology. The
rules are stored in a rule base, and when a rule is derived, its
frequency in the rule base is incremented by 1. Rules in this
rule base carry with them an indication of the position of the
letter within the word from which the rule was created: "b"
for beginning, "e" for end, and "m" for between the begin-
ning and end. Thus, the rules are position specific.

Single-letter rules are derived when the number of letters
in the word equals the number of phonemes in the corre-
sponding phonology. In this case, the algorithm assumes a
simple one-to-one mapping (e.g., for MINT the rules are m —>

Table 4
Examples of the Coltheart, Curtis, Atkins, and Holler (1993) Rules
and Their Application

Word

lame
lamp
lance
land
lane
lap
laps
lapse
lard
large
sloe
sloop
slop
slope
slot
slouch
slough
slow
sludge
slug
sluice
slum

Correct

lAm
lamp
lans
land
lAn
lap
laps
laps
lord
lorj
slO
slUp
slop
slOp
slot
slWC
sl"f
slO
sn
sTg
slUs
sl'm

Rulel

1-»1
1-^1
1-»1
1-^1
1-»1
1-»1
1-*1
1-»1
1-^1
1^1
s — > s
s — » s
s — » s
s — > s
s — > s
s — > s
s — > s
s — > s
s — * s
s — » s
s — » s
s — > s

Rule 2

a e — » A
a -» a
a e — => A
a -» a
a .e — * A
a — » a
a — » a
a e — > A
(CS)ar -> o
a e — > A
-»1
-H
->1
-»1
->1
-»1
->I
-»1
->I
->1
-»1
-»1

RuleS

m —> m
m — > m
n — » n
n — > n
n — » n
p - > p
P~*P
p-^p
r — > r
r — »r
oe ->O
oo ->U
o — » o
o_e ->O
o — > o
ou->W
ough — > W
ow-*W
u — > "
u -»~
ui e — > I
u — > "

Rule 4

P-^P
ce — > s
d-^d

s — > s
se -> s
d-*d
ge^j

P-^P
P-^P
P~*P
t -» t
ch-^C

dge-»j
g -*g
ce — > s
m -> m

Output

lAm
lamp
lAnsa

land
lAn
lap
laps
LApsa

lord
lAif
slO
slUp
slop
slOp
slot
slWC
slWa

slWa

sl"j
sTg
sllsa

sl'm
Note. Key to pronunciations: A = a in DAY, a = a in BAT, O = o in BOAT, o = o in HOT, U = oo
in GOOSE, ' = u in BUT, e = ea in HEAD, I = i in DIVE, W = ow in HOW, cs = context-sensitive rule.
a = Error.



1184 SEIDENBERG, PLAUT, PETERSEN, McCLELLAND, McRAE

/m/, i —»• IH, n —> In/, t —> /t/). Multiletter rules are necessary
when the word has more letters than phonemes (e.g., TACK
has four letters but only three phonemes). These rules are
derived by first applying the single-letter rules to the word
and then using what is left over to create multiletter rules
(e.g., ck —> /k/). Letters in multiletter rules need not be
adjacent, however (e.g., for GATE, rule a e —> /A/ is
derived). A special case of multiletter rules occurs when the
word contains "silent" letters that do not contribute to the
phonology of the word (e.g., the second F in BLUFF). These
rules are formed by incorporating the letter immediately
preceding the letter in question in the rule (e.g., ff —> /ff). If
the letter in question is at the beginning of the word, then the
letter that follows it is used to form the rule (e.g., in KNIT,
rule would be kn —* /n/).

Some context sensitivity must be introduced because the
algorithm otherwise generates conflicting rules (e.g., a —>
/a/ in HAM, but a —> lot in HARM). If handled only by retaining
the most frequent rule within a set of conflicting rules, the
algorithm's ability to generate correct pronunciations would
be severely compromised. Before discarding the less fre-
quent rules, the absolute and relative frequencies of the rules
are examined. If these frequencies are above 5 and 0.2,
respectively, the algorithm tabulates the letters immediately
preceding and following the letter in question. If a particular
letter context "greatly predominates," it is used in the cre-
ation of a context-sensitive rule. In its current version, the
algorithm only derives context-sensitive rules from words
with the same number of letters and phonemes.

Position-dependent rules are consolidated into "a" type
(all-position) rules when two of the three types of rules (b,
e, and m) are represented in the rule list for a given GPC
(e.g., the oo -»/U/ rule is an "a" rule because "e" and "m"
rules exist in the rule list before consolidation). This allows
the application of the rule to novel occurrences (e.g., oo at
the beginning of a word).

Applying the rules. The database of rules is then applied
in generating pronunciations for letter strings (words and
nonwords). Whether a rule is applied depends on a critical
frequency parameter. The results that Coltheart et al. (1993)
reported used a minimum frequency of 2: Rules had to be
derived from at least two words in order to be used. When
presented with a letter string, the algorithm applies the rules
left to right, using the multiletter rules first and the single
letter rules last. When a rule is used, the matching part of the
input string is absorbed, and the rule application process is
repeated for the remainder of the string.

For example, when presented with the word CHIP, the
algorithm first checks for rules dealing with the entire string
CHIP. Because it finds none, it then looks for rules dealing
with CHI. After another unsuccessful search, it then looks for
rules for CH and finds ch -> /C/. The phoneme Id is stored,
and the remainder of the input string, IP is then checked.
Because no rule exists for IP, i is checked, and a single-letter
rale is found (i —> /if). The phoneme /i/ is then stored. The
string p is then presented for rule application, and the
single-letter rale p —> /p/ is found, causing the phoneme /p/
to be appended to the output. The output is thus /Cip/, which
is correct.

The settings of the parameters in the Coltheart et al.
(1993) rale generation and application algorithms yielded
highly accurate performance on nonwords and errors on
about 22% of the words in the corpus. The latter items are
the exceptions to the rules, which must be listed separately.
Table 5 shows a summary the kinds of items that are
mispronounced. The most common error is a regularization
of an irregularly pronounced word (e.g., ARE —» I Ail,
DONE —> /dOn/. The rales also fail to pick up on many
subregularities. For example, ow is always pronounced as in
HOW, causing mispronunciations of KNOW, BLOW, FLOW,
GLOW, and so on. The other types of errors occur much less
frequently. In assessing this model's performance on the
nonword corpus, we used the same parameter settings as in
the simulations reported in Coltheart et al.

Table 5
Types and Examples of Mispronunciations Produced by
the Coltheart, Curtis, Atkins, and Hotter (1993) Rules

1. Regularizations of obvious exception words
Item Regularization
are Ar
done dOn
doubt dWbt
pint pint
tongue tongU

2. Failures to pick up on subregularities
Pattern Pronunciation Causes errors on
ow always W flow, blow, glow, low, etc.
initial c always k cent, cease, cell, cite, etc.
initial g always g gene, gent, germ, gel, etc.
initial ph always ph initial ph —» f

3. Errors on words with highly regular neighborhoods
Item Pronunciation Causes errors on
car kar car, bar, far, par, etc.
all al ball, fall, tall, mall, etc.
halt h*t halt, malt, salt
mind mind mind, find, rind, kind, etc.
cook kUk book, look, hook, took, etc.

Item
farce
glance
volt
buck

4. Overgeneralization of rules
Pronunciation Overgeneralized rule

fArs a e — » A
glAns
vOt
bk

5.
Item

Eath
iith

shoal
sixth

a e — > A
ol -^O
bu^b a

Other errors
Pronunciation

PT
fTi
SO
sikT

Note. The pronunciations are written with the symbols used in
"A Distributed Developmental Model of Word Recognition and
Naming" by M. S. Seidenberg and J. L. McClelland, 1989, Psy-
chological Review, 96, p. 533. Copyright 1989 by the American
Psychological Association. See the Appendix for a pronunciation
key.
a Vowel is deleted from all bu words (e.g., bug —» /bg/, but —>
/bt/, etc.).
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Scoring Issues

Nonwords do not have conventional pronunciations,
which introduces a question as to which responses should be
scored as correct for the purpose of comparing models. Our
guiding principle was that consistent criteria be used in
scoring the models' output and the subjects' responses. Two
analyses were performed. The liberal scoring criterion ap-
proximated the ones used in the Glushko (1979) and
McCann and Besner (1987) studies: The models' responses
to these items were scored as correct if we could identify a
plausible basis for them (either a rale or an analogy to a
neighboring word). For the nonwords in our study, we used
the following criterion: As noted previously, the two most
common pronunciations of each nonword accounted for
more than 93% of subjects' responses. We scored the mod-
els' output for a nonword as correct if it matched either of
these pronunciations. Thus, all three sets of behavioral data
and both models were scored using approximately the same
criteria.

For the data collected in our experiment, a stricter crite-
rion was also used: We examined the distribution of pro-
nunciations across subjects and determined how often each
model produced the first, second, or third most common
pronunciation. For example, there were two pronunciations
for BLEA: /blE/, produced by 70.8% of the subjects, and
/'blA/, produced by 20.8% (the other responses were clear
errors). The three pronunciations for FEANT were, in order of
frequency, /fEnt/, /fent/, and /fAnt/. We determined how
often the models' response for a given nonword matched
one of these responses. The stricter criterion could not be
used for Glushko's (1979) and McCann and Besner's
(1987) items because these authors did not provide infor-
mation about the alternative pronunciations generated by
the subjects. In summary, the lenient criterion indicates the
extent to which the models were producing plausible output
for three sets of nonwords; the stricter criterion indicates the
extent to which they matched subjects' preferences for the
nonwords in the larger corpus.

For the PDF model, we used the weights that were used
in simulations described by Plaut and McClelland (1993).
For the rales, we used the 144 rales that were used in the
simulations described by Coltheart et al. (1993).

Results

After 3,200 epochs of training, the network correctly
pronounced all but 10 of the words in the training corpus
(99.7% correct). Coltheart et al. (1993) reported that their
model produced correct responses for about 78% of the
words in Seidenberg and McClelland's (1989) 2,897 word
corpus. The 22% that were mispronounced are considered
exceptions, to be pronounced by a separate mechanism.

Turning to nonwords, we first consider performance on
Glushko's (1979) and McCann and Besner's (1987) bench-
mark lists, using the lenient criterion. Glushko's nonwords
are relatively simple items such as BINT and MEAN; McCann

and Besner's are harder items such as JINJE and TUNCE. Both
models performed comparably to subjects and differed little
from each other (see Table 6). The results were similar for
the 590 items in our study, except that performance of the
PDF model was somewhat more accurate and closer to the
subjects' than were the pronunciation rales.

Results using the stricter scoring criterion are presented in
Figure 3. The figure indicates that the models matched
subjects' preferences about equally well. The PDF model
matched subjects' most preferred pronunciations 3.2% more
often that did the rules. The other major difference was in
the "other" category, in which the Coltheart et al. (1993)
rules generated more pronunciations that were produced by
subjects with low frequency or not at all.

These results are relevant to issues raised by Coltheart et
al. (1993, p. 603). They examined the pronunciation of two
nonwords, NIND and JOOK, in detail. Their rules generated the
pronunciations /nind/ (rhymes with SINNED) and /jUk/
(rhymes with SPOOK), which were the pronunciations that
subjects preferred. The Seidenberg and McClelland (1989)
model produced the pronunciations /nind/ (like KIND) and
/juk/ (like BOOK). The PDP model erred on these items
because it used information concerning the word bodies
contained in these items. The most common pronunciation
of -IND is as in FIND, MIND, and BIND; the most common
pronunciation of -OOK is as in COOK, BOOK, and LOOK. The
analyses of these two items suggested to Coltheart et al. that
the PDP approach would be at a disadvantage in pronounc-
ing nonwords because it is sensitive only to word bodies. In
fact, the model is not restricted to information about word
bodies; this unit is merely the most salient one. More
important, the data presented in Figure 3 suggest that when
a broader range of nonwords is considered, both models
generate less preferred pronunciations about equally often.
Thus, although the modified PDP model still pronounced
JOOK as the less preferred /juk/, the rules pronounced SEART
as the less preferred /sErt/, BRILD as the less preferred /brild/,
and JEALM as the less preferred /jElm/.6

Finally, we considered the consistency effects in Table 1.
The Coltheart et al. (1993) model does not make specific
latency predictions for words or nonwords. The model as-
sumes that nonwords are pronounced by applying the rules;
hence, a factor such as the number of alternative pronunci-
ations associated with a nonword should not be relevant,
contrary to the results in Table 1. Thus, in its present
state, the Coltheart et al. model does not account for these
effects. We derived latency predictions from the PDP
model as follows. The Seidenberg and McClelland (1989)
model computed pronunciations in a single step, and

6 These examples illustrate how the limitations of one's current
model provide insights that point toward future developments. One
reason why people avoid the pronunciation /juk/ is probably that
whereas there are many words containing /uk/, there are none
containing /ju/ (note that the vowel in JUDGE and JUG is different).
The absence of this consonant—vowel combination derives from
articulatory constraints that are outside the scope of the current
model. Incorporating these constraints would be a natural direction
for future research.



1186 SEIDENBERG, PLAUT, PETERSEN, McCLELLAND, McRAE

Table 6
Percentage Correct on Nonword Pronunciation,
Lenient Scoring Criteria

Experiment

Glushko (1979)
McCann & Besner (1987)
The current study

Subjects

94.9
91.5
92.7

PM

96.5
85.6
88.3

CCAH

98.0
88.2
82.0

Note. Subject data are from the original experiments. PM =
Plaut and McClelland's (1993) model; CCAH = output from
Coltheart, Curtis, Atkins, and Haller's (1993) pronunciation rules.

naming latencies were simulated using a sum of squared
error score. The revised model computes phonological
codes over a series of time steps, and a closer analog of
reaction time is provided by the number of steps for the
output pattern to settle (i.e., for the activations of units to
stop changing). The timescale of the simulation is deter-
mined by the T parameter in Equations 3-4. For this anal-
ysis, the criterion for settling was that no unit state
changes by more than 0.001 (i.e., a very small amount)
and T was set to 0.01 (i.e., 100 unit updates per unit of
time). Table 1 provides summary data concerning non-
words associated with one, two, or three pronunciations
across subjects. The model's mean settling times for these
items are given in the last column of Table 1. The mod-
el's output is computed deterministically; hence, only one
pronunciation is produced for each nonword. The settling
times for these pronunciations show a distinct consistency
effect: They increase as a function of the number of asso-
ciated pronunciations, as in the subject data. A one-way
analysis of variance on these data yielded a significant ef-

100]

First Second Third All Others

Pronunciation

Figure 3. Fit between subjects' pronunciation preferences and
models' responses. Data for subjects indicate percentage of re-
sponses accounted for by first, second, and third most common
pronunciations and all others. Data for the models indicate the
percentage of responses that matched subjects' first, second, third,
or other pronunciations. PDP = parallel distributed processing
model.

feet of type, F(2, 539) = 23.516, p < .001, with post hoc
comparisons yielding highly significant differences be-
tween all pairs of means.

As expected, then, with the modifications introduced by
Plaut and McClelland (1993) and the same scoring criteria
applied to both model and people, the PDP model no longer
exhibits a deficit in nonword performance compared with
the rules. Moreover, it simulates the consistency effect
without requiring additional stipulations.7

General Discussion

We have presented the results of a nonword naming
experiment that provides data against which current models
can be assessed. Subjects showed a high degree of agree-
ment about the pronunciations of simple nonwords; how-
ever, many nonwords did generate alternative pronuncia-
tions that need to be considered. Both models produce
plausible nonword pronunciations. The dual-route model
does so by using rules that generate correct output for most
words but mispronounce a significant number of excep-
tions. The PDP model does so by finding a set of weights
that also allow it to generate correct output for more than
99% of the words, including both "rule-governed" items
and "exceptions." Thus, simple PDP networks can encode
both types of items with good generalization, as Seidenberg
and McClelland (1989) suggested. Conjectures about the
limitations of these networks by Besner et al. (1990), Pinker
(Pinker & Prince, 1988; Prasada & Pinker, 1993), and
Coltheart et al. (1993) are not supported by these results.

Plaut and McClelland (1993) carried out a number of
analyses aimed at clarifying how the network is capable of
reading both exception words and nonwords as well as
skilled readers can. The one most relevant here involved
trying to determine whether the network had segregated
itself over the course of training into the two functionally
separate subsystems of the dual-route model. If this were
true, some hidden units should be particularly important for
pronouncing nonwords but not exception words, whereas
others should show the opposite specialization. Plaut and
McClelland (1993) considered a hidden unit "important" for
pronouncing an input if the cross-entropy error increased by
at least 0.025 when that unit was removed from the network.
The specific value of this criterion is not critical; the value
of 0.025 was chosen so that approximately 20% of hidden
units were considered important for a given stimulus on
average. The segregation hypothesis suggests there should
be a negative correlation across hidden units in the number
of nonwords versus the number of exception words for
which each is important. By contrast, for a set of ortho-
graphically matched nonwords and exception words (Tara-

7 We have not conducted statistical tests to examine whether the
small differences in performance seen in Figure 3 are reliable
because the data do not justify this kind of comparison. We have
made no attempt to vary parameters that would yield slightly
different sets of rules or weights that might have small effects on
the data. The results are sufficient to show that neither model is
disadvantaged in terms of nonword performance.
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ban & McClelland, 1987), there was a moderate positive
correlation (r = .43, p < .001). Some hidden units are more
important than others overall, but there is no evidence that
the network has segregated itself into separate rule-based
and lexical lookup mechanisms.

Having established that both models produce plausible
nonword pronunciations, it is necessary to consider how
they account for more detailed aspects of human perfor-
mance. Our behavioral study replicated the consistency
effect discovered by Glushko (1979): Nonwords containing
spelling patterns associated with multiple pronunciations
yielded longer latencies than nonwords that were assigned a
single pronunciation. This effect also occurs for words (e.g.,
MINT takes longer to read than MUST because -INT is also
pronounced as in PINT). These effects emerge naturally in
PDF models because a single mechanism is used in reading
both regular and irregular words; the weights therefore
reflect exposure to both types of items and encode the
degree of consistency in the mapping between spelling and
sound. We have shown that the model described here also
exhibits the consistency effect for nonwords.

These effects are problematical for the dual-route model;
in fact, their discovery was taken as strong evidence against
the assertion that regular words and nonwords are named by
applying GPC rules (Glushko, 1979; Henderson, 1982;
Patterson & Coltheart, 1987). Once the consistency effects
were uncovered, it was necessary to introduce new assump-
tions into the dual-route model in order to account for them.
These additional assumptions introduce new problems,
however. Consistency effects are said to arise when the two
routes yield conflicting information (Coltheart et al., 1993).
Consider, for example, the irregular word PINT, the rule-
governed but inconsistent word MINT, and the nonword BINT.
PINT takes longer to name than an entirely regular word (e.g.,
BENT); in the dual-route model this is attributed to a conflict
between the output of the lexical route (which is the correct
pronunciation of PINT) and the output of the GPCs (the
regularized pronunciation /pint/). Entirely regular, rule-
governed words such as BENT do not produce this conflict;
hence, they are named faster. This account does not extend
gracefully to inconsistent words such as MINT, which also
take longer to name than entirely regular and consistent
words because of interference from exceptions such as PINT
(e.g., Glushko, 1979; Jared, McRae, & Seidenberg, 1990).
In the dual-route model, it must be assumed that processing
of the word MINT results in activation of the pronunciation of
PINT by means of the lexical route. To the extent that the
lexical route is activating such "neighboring" words, it
begins to approximate the analogy process described by
Glushko (1979; see Patterson & Coltheart, 1987, for a
discussion) as well as the effects of neighboring words on
the weights in the PDP models. Thus, the dual-route model
accommodates these effects by implementing mechanisms
analogous to those in the PDP models.8

The consistency effect also occurs in nonwords (e.g., BINT
is named more slowly than BIST); hence, it has to be assumed
that attempting to name BINT also results in activation of the
pronunciation associated with PINT. In the dual-route model
this pronunciation can be accessed only through the lexical

route. Thus, the model accounts for consistency effects by
assuming that MINT and BINT activate the pronunciation of
PINT the same way that PINT does. This entails abandoning
the core assumption that nonwords are pronounced through
the exclusive use of nonlexical GPCs, without any recourse
to lexical knowledge.

In the PDP models, these effects follow from indepen-
dently established principles about distributed representa-
tions and error-correcting learning algorithms. Moreover,
these principles also account for frequency effects, the in-
teraction of frequency and consistency, and a variety of
other phenomena (Seidenberg & McClelland, 1989). The
two models thus represent highly different approaches to
explaining the behavioral phenomena. The PDP approach
shows that various behavioral phenomena in reading follow
from basic properties of learning in certain types of net-
works. The issues that this approach face concern things
such as finding general solutions to the problem of repre-
senting phonological information, issues that are not at all
specific to reading. The dual-route model starts with mech-
anisms that were introduced largely in response to broad
patterns of impairment associated with acquired forms of
dyslexia (e.g., Patterson, Coltheart, & Marshall, 1985). The
issues that face this approach concern the validity of addi-
tional assumptions that need to be introduced in order to
account for more detailed aspects of reading performance,
such as consistency and frequency effects. The dual-route
approach is therefore much more in the spirit of fitting
models to data rather than deriving models from more
general explanatory principles (Seidenberg, 1993). In clos-
ing, we consider the issues that confront each approach in a
bit more detail.

Dual-Route Model

Coltheart et al. (1993) succeeded in generating a rela-
tively small set of rules that yield good nonword perfor-
mance. This is a significant advance over previous dual-
route models, which relied heavily on the concept of GPCs
without specifying their content. The specific rules dis-
cussed by Coltheart et al. introduce some problems that
could be addressed by modifying the rules; however, they
also raise more general issues concerning the validity of the
approach.

The basic question regarding the proposed rules is
whether they are the ones that people actually know and use
in generating word and nonword pronunciations. Several
issues arise. First, many of the rules lack face validity. For
example, the algorithm induces the rule sh k -» S be-
cause of the words SHACK, SHOCK, and SHUCK. This generates
errors on words such as SHIRK, SHARK, and SHANK (the final
/k/ is omitted), which then must be treated as exceptions.
There is no independent evidence that people generate such
unusual rules or that these items are exceptions. In other

8 Coltheart, Curtis, Atkins, and Haller (1993) proposed incorpo-
rating an entire connectionist network (McClelland & Rumelhart,
1981) to serve as the lexical route.
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cases, the rules produce correct output but for apparently
spurious reasons. For example, BOSS is correctly pronounced
by applying three rules:

b-*/b/

ss — > /s/.

The second rule, which converts the pattern o _ s to the
vowel /*/, is problematical. The rule is created by the
LOSS— CROSS- BOSS- GLOSS neighborhood. However, it causes
errors on words such as DOTS and GOES, which must be
treated as exceptions. Moreover, it produces bizarre errors
on these items (e.g., DOTS — > /d*t/, GOES — > /g*e/).

A third question is whether the rules correctly differenti-
ate the rule-governed items from the exceptions, as they are
supposed to do according to the dual-route theory. The
number of exceptions that the rules are allowed to miss is
not determined by independent evidence about people's
performance on these words. The purpose of the rule-
induction algorithm is to induce a set of rules that produces
highly accurate performance on regular words and non-
words; the exceptions are then whichever words the rules
fail to pronounce correctly. This set includes words that are
generally agreed on to be exceptions (e.g., ACHE, ARE) and
words that are not (e.g., BALL, DOTS). The rule and PDF
models also make different predictions about which words
should be difficult to pronounce. The rules, for example,
treat SPOOK (the only -OOK word pronounced with /U/) as rule
governed and COOK, BOOK, LOOK, TOOK, ROOK, HOOK, NOOK,
BROOK, CROOK, and SHOOK as exceptions. This is because
there is one rule governing oo, and it assigns the pronunci-
ation that occurs in words such as FOOD, LOOP, and SOON. In
the PDF models, the pronunciation of a vowel is affected by
the context in which it occurs, particularly the coda. Thus,
oo is pronounced /u/ when followed by K but /U/ when
followed by N or P. According to the rules, SPOOK is easy
and SHOOK is hard; for the PDF models, the opposite is
predicted. Such predictions can be tested in behavioral
experiments with normal subjects.

More generally, what these examples reveal is that the
GPC-based approach cannot encode sub- or partial regular-
ities, despite their prominence in English. Thus, the rules
fail to encode the subregularity concerning the effects of
coda K on nucleus oo. Moreover, this approach treats COOK,
BOOK, and all of their neighbors as unrelated. They are
simply items for which the rule for oo fails to generate
correct output; the fact that COOK and BOOK also rhyme,
owing to a generalization concerning the -OOK neighbor-
hood, is completely missed. Insofar as such generalizations
have a systematic impact on human naming performance
(see Jared et al., 1990, for a summary), this is a problem for
the GPC-based approach. One possibility would be to aban-
don the idea that the rules operate over graphemes and
phonemes in favor of a more flexible system that operates
over different-sized units. That would represent a return to
a view developed by Shallice, Warrington, and McCarthy
(1983). The other alternative is to abandon the commitment

to the rale formalism entirely in favor of a type of repre-
sentation that is better suited to capturing "quasi-regular"
(Seidenberg & McClelland, 1989) forms of knowledge such
as English spelling-sound correspondences. That is what
the PDF models provide.

The rules also make predictions about the behavior of
surface dyslexic patients that seem problematical in light of
existing evidence. According to the dual-route theory, sur-
face dyslexics have partial impairment in the "lexical" nam-
ing mechanism; thus, they pronounce exception words by
applying rules, producing regularization errors. Patient MP
(Bub, Cancelliere, & Kertesz, 1985) is a particularly notable
case because almost all of her errors seemed to be clear
regularizations. Thus, she pronounced STEAK as /stEk/, HAVE
as /hAv/, and so on. The Coltheart et al. (1993) rules provide
a basis for predicting which exception words should be
regularized by such patients, namely, the items on which the
rules produce regularization errors. In many cases the pro-
posed rules make correct predictions: For example, they
regularize STEAK and HAVE. However, in many cases they do
not. For example, the rules generate correct pronunciations
for FOUGHT, HYMN, POLL, SUIT, and TOMB, all of which were
mispronounced by Patient MP (e.g., TOMB pronounced
/tOm/ and SUIT pronounced /sUit/).

The question as to whether the rules isolate the correct set
of exceptions has implications that transcend the particular
rules proposed by Coltheart et al. (1993). The basic require-
ment for their algorithm is that it induce rules that generate
correct output for nonwords and for regular words. The
number of exception words that can be missed is relatively
unconstrained. This introduces an important extra degree of
freedom in the theory. As Seidenberg (1992a) noted, any
system can be treated as rule governed if there is a second
mechanism for dealing with all of the exceptions to the rules
and no limit on what can be counted as an exception. Thus,
the past tense in English can be treated as rule governed if
one excludes exceptions such as SING-SANG and RING-RANG,
and the spelling-sound correspondences of English can be
treated as rule governed if enough words are treated as
exceptions. As long as attention focuses only on producing
the correct output, the dual-route model cannot fail: There
are two types of phenomena (rule-governed cases and ex-
ceptions) and two mechanisms (rules, lexical lookup). As
the discussion of Patient MP's data suggested, however,
which items are treated as exceptions is actually an empir-
ical question that needs to be addressed in order to eliminate
this extra degree of freedom. A stronger assessment of the
adequacy of the dual-route approach can be achieved by
considering a broader range of phenomena than just pro-
nunciation accuracy, eliminating the extra degree of free-
dom that currently exists. These phenomena include pro-
nunciation latencies for different types of words and
nonwords (see Coltheart and Rastle, 1994), as well as pat-
terns observed in normal reading acquisition and develop-
mental dyslexia.

Finally, there is a question as to how much the modified
dual-route model differs from the PDF account. The Colt-
heart version of the dual-route model initially made two
strong assumptions: (a) Regular words and nonwords are
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pronounced by applying nonlexical rules and (b) the rules
operate over graphemes and phonemes without regard to
context (see, e.g., Coltheart, 1978). The more recent dual-
route model abandons both of these assumptions in favor of
alternatives that make it more difficult to distinguish from
the PDF approach. With regard to the first assumption, the
naming of at least some regular words and nonwords must
be assumed to involve both routes in order to accommodate
the consistency effects. With regard to the second assump-
tion, Coltheart et al. (1993) introduced a degree of context
sensitivity into their rules, which means that they no longer
simply refer to graphemes and phonemes. Context sensitiv-
ity increases the descriptive power of the rules enormously.
However, it forfeits the appealing simplicity of the GPC
idea and makes the rules' behavior hard to differentiate
from that of the PDF network.9

The fact that rules are generated for correspondences that
occur in as few as two items also contributes to this ten-
dency. The number of items in which a GPC is found before
it is added to the set of rules is a parameter, which was set
to 2 in the Coltheart et al. (1993) study. This means that the
"lexical" route is responsible for correspondences that only
apply once. As we have shown, the models are already
difficult to tell apart. Setting this parameter to 1, however,
results in a model in which all words and nonwords can be
pronounced by means of a single mechanism, exactly as in
the PDF approach. A similar outcome can be achieved by
exploiting the context sensitivity that Coltheart et al. allow
in their rules. Once the rules are allowed to be context
sensitive, there is nothing to prevent creating rules that
generate correct pronunciations for exception words. With
some additional assumptions (e.g., "strengths" associated
with individual rules; conflicts between the rules as the
source of consistency effects), the "rule-based" mechanism
might succeed in simulating the behavior of the PDF net-
work. At that point one could say that the rules provide an
alternative means of implementing the net (see Seidenberg,
1992a, in press, for a discussion). This might be a useful
thing to do because it would contribute to identifying the
deeper underlying principles that govern behavior in this
domain, but it would mean that the dual-route model does
not provide a distinct theoretical alternative.

Of course, some of the resemblance between the PDF and
dual-route models derives from the fact that both are dealing
with the same phenomena. For example, both models must
have mechanisms for computing from orthography to se-
mantics and from semantics to phonology. This necessarily
implies the existence of a second source of information
relevant to generating pronunciations from print (see Plaut
& Shallice, 1993, for models of this process). That this
component of the lexical system contributes to the pronun-
ciation of some words is supported by both computational
and empirical evidence. The Seidenberg and McClelland
(1989) model never learned the pronunciations of a small
number of low-frequency irregular words (e.g., AISLE). Such
items are good candidates for pronunciation by means of the
orthography —» semantics —> phonology computation.
Strain, Patterson, and Seidenberg (in press) provide evi-
dence that semantic information is used in generating the

pronunciations of such words. More generally, Plaut et al.
(1994) discussed issues concerning what they termed the
division of labor between components of the lexical pro-
cessing system (see also Seidenberg, 1992b). Although this
approach does not retain the idea of independent processing
"routes" or other assumptions of the dual-route model, it is
a response to many of the same issues that motivated the
earlier approach.

PDF Models

The PDF model described here represents part of a series
of experiments using different architectures to solve the
orthography-phonology mapping problem (see Plaut et al.,
1994). Such experiments provide important information
about the factors that control a model's performance. Plaut
and Shallice (1993), for example, examined a broad range
of architectures relevant to the computation of word mean-
ings and were able to identify general principles that gave
rise to target phenomena. Our exploration of alternative
architectures for performing the orthography to phonology
mapping suggests that properties of the orthographic and
phonological representations exert considerable influence
over detailed aspects of performance. This was suggested
by Seidenberg and McClelland's (1990) analysis of their
model's errors, and it is borne out by the simulations dis-
cussed here.

Issues concerning the design of such representations are
considered by Plaut et al. (1994). Plaut and McClelland's
(1993) solution to the dispersion problem they identified in
the Wickelphonology representation used by Rumelhart and
McClelland (1986) and Seidenberg and McClelland (1989)
involved two major changes: (a) replacing the phonetic
feature triples of the Wickelphonology with a phonological
level of representation and (b) introducing a syllabic struc-
ture (onset, nucleus, and coda positions) that allowed the
representation to encode more of the phonotactic constraints
of English. The new representation incorporates some ad-
ditional aspects of phonological structure and eliminates
unattractive features of the Wickelphonology that caused
spurious errors. It should be clear, however, that the system
described in Table 3 is only a further step toward com-
pletely general solutions to the problem of representing
orthographic and phonological information. The represen-
tations we have used are still limited to monosyllables, and
extensions to multisyllabic words are nontrivial. Moreover,
future research will have to address how these orthographic
and phonological representations develop. In reality, pho-
nological representations are determined by constraints on
possible segments imposed by articulatory and perceptual
capacities and by characteristics of the language to which
the child is exposed. Complex representations of the sound
patterns of a language are in place before the child begins to
read. These representations may themselves change as a

9 The context-sensitive grapheme-phoneme correspondences
might be termed Wickelrules (M. C. MacDonald, personal com-
munication, 1993).
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consequence of exposure to written language, especially
alphabetic orthographies (Bertelson & de Gelder, 1989).
The PDF models that we have described obviously did not
attempt to model these developmental events. Rather, the
revised model built some of the relevant orthotactic and
phonotactic knowledge into the representations, which al-
lowed us to focus on the problem of learning the mapping
between them while maintaining good generalization. The
better performance of the revised model is consistent with
the view that having a highly structured phonological rep-
resentation in place facilitates the acquisition of reading
skill. Harm, Altmann, and Seidenberg (1994) describe sim-
ulations providing additional support for this conclusion.
Their simulations showed that learning the correspondences
between orthography and a prestructured phonological rep-
resentation produced faster learning, more accurate asymp-
totic performance, and better nonword generalization than
when the phonological representation was unstructured.
These simulations point to directions for future research that
will yield even more realistic models than the ones dis-
cussed here.
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Appendix

Data Concerning Preferred Pronunciations of 590 Nonwords

Item

baint
bange
barce
barsh
bartz
baugh
beese
beil
beint
belf
belm
bense
bibe
bierce
biff
bimpse
bine
binch
bint
bip
bipe
blaft
Wan
blash
blaunt
blea
blex
blypt
boach
boaf
boarse
boist
bonge
borge
bort
bove
braist
braze
breat
brewn
brild
brist
brune
buch
bup
burf
bux
byth
cack
chamb
chank
chape
chaut
chawn
chazz
chence
cherd
chig
chis
choad
choll
chone
chork
chure
chye

Pron

bAnt
banj
bore
borS
borts
b*
bEs
bAl
bAnt
belf
belm
bens
bib
bErs
bif
bimps
bink
binC
bint
bip
bip
blaft
Wan
blaS
blont
WE
bleks
blipt
bOC
bOf
bOrs
bYst
bonj
bOrj
bOrt
bOv
brAst
brAz
brEt
brUn
brild
brist
brUn
b'C
b'p
berf
b'ks
biT
kak
Cam
Cank
CAp
C*t
C*n
Caz
Cens
Cerd
Cig
Ciz
COd
CO1
COn
Cork
Cer
CI

n

23
14
24
23
21
19
15
11
18
24
23
22
24
21
24
23
21
23
24
24
22
22
24
24
20
17
23
14
24
21
24
22
13
21
24
19
24
23
18
23
23
24
24
11
24
24
22
9

23
18
21
19
12
21
21
21
21
23
13
22
13
20
22
16
22

RT

671
732
669
691
654
712
634
718
694
658
655
666
612
766
623
686
655
607
624
650
658
635
574
615
663
654
614
743
638
696
719
628
770
642
594
681
677
631
737
694
722
609
692
754
642
632
625
944
669
769
681
751
711
706
673
795
662
658
793
723
670
722
690
757
706

Item

clart
cleash
clert
cles
cleve
clise
clo
cloor
clurt
clyle
cooze
cound
craid
crame
creal
crean
creet
creighth
crelt
crent
cryke
cuce
curnt
dacht
dade
dafe
dain
dar
dask
daste
dath
datt
dench
denth
derch
dewt
diend
dieve
dilge
dilt
dirm
disp
dithe
dixth
doath
dode
doir
dold
doof
doup
draille
drang
drase
dre
drebb
dreer
drel
drept
drit
droap
drock
dront
drook
drost
drouth

Pron

klort
klES
klert
kles
klEv
kHz
klO
MUr
klert
kill
kUz
kWnd
krAd
krAm
krEl
krEn
krEt
krAT
krelt
krent
krlk
kUs
kernt
dakt
dAd
dAf
dAn
dor
dask
dAst
daT
dat
denC
denT
derC
dUt
dEnd
dEv
dilj
dilt
derm
disp
dID
diksT
dOT
dOd
dOr
dOld
dUf
dUp
drAl
draN
drAs
drE
dreb
drEr
drel
drept
drit
drOp
drok
dront
drUk
drost
drWT

n

24
23
23
22
20
10
23
17
23
17
22
20
24
20
24
23
24
14
24
24
22
21
23
13
24
18
24
24
24
17
24
24
24
24
21
21
10
15
23
24
23
24
8

20
22
22
12
17
22
21
22
23
12
14
24
23
24
21
20
21
24
22
19
21
18

RT

654
793
615
628
770
715
597
630
641
916
652
729
644
665
640
731
689
899
658
651
685
827
748
65f
604
642
62'
613
579
692
592
620
607
570
663
632
860
703
650
576
627
575
675
667
618
640
724
612
635
675
723
635
602
645
665
680
620
631
677
692
620
656
669
648
673
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Item

drew
druile
drust
duess
duge
duilt
dur
durb
durse
dush
dyst

fache
fane
fard
faunch
fauze
feant
feap
feath
feech
fey
fich
fiek
fmth
fipt
firch
firk
fiss
fize
flas
fleik
floth
flun
flutch
foast
fod
fonce
fong
fooch
foon
foose
forch
foun
foupe
frad
frand
frast
freamt
frell
fren
frewe
froke
fru
fruise
fruke
fruse
fulse
fumb
furk
garge
gat
gerse
gick
gieze
gign

Pron

drW
drill
dr~st
dUs
dUj
dilt
der
derb
ders
dAS
dist
faS/
faC
fAn
ford
PnC
f*z
fEnt
fEp
fET
me
fA
fiC
ffik
finT
fipt
ferC
ferk
fis
flz
flas
flAk
floT
fTn
fTC
fOst
fod
fons
f*N
fUC
fUn
fUs
fOrC
fWn
fUp
frad
frand
frast
frEmt
frel
fren
frU
frOk
frU
frUz
frUk
frUz
f'ls
Tm
ferk
g°0
gat
gers
gik
gEz
gin

n

16
17
22
14
16
10
17
24
24
24
17

11
23
23
22
14
14
23
18
19
21
21
13
22
21
24
23
23
13
22
10
19
23
22
20
24
23
23
18
23
21
23
12
22
21
20
20
17
22
23
21
24
24
12
23
20
21
15
24
23
23
21
22
11
10

RT

619
797
609
797
753
794
665
649
665
687
714

794
706
663
665
706
785
733
739
611
655
626
656
673
724
699
679
654
804
634
790
665
700
693
698
619
642
621
641
668
717
640
780
726
678
771
698
865
645
678
707
664
674
816
719
713
651
667
651
626
596
679
690
847
839

Item

glab
glare
glay
glealth
gleard
glebt
glep
glesh
glief
glithe
glourt
gluff
glusk
goak
goise
golk
gomb
gou
grail
graw
graxe
greep
greft
grend
grood
groot
gruite
gray
gulb
habe
halm
hapt
beam
hease
hef
begg
hene
hength
hepth
herf
herge
hifth
hile
hilk
hine
hink
hisk
hoat
hodd
hoost
hoothe
horst
hosh
howd
huild
hulp
jamp
jate
jauce
jealm
jeir
jide
jind
jir
jitt
jom

Pron

glab
glork
glA
glET
glErd
glebt
glep
gleS
glEf
gliT
glOrt
gTf
gl'sk
gOk
gYz
g*lk
gom
gu
grol
gr*
graks
grEp
greft
grend
grUd
grUt
grUt
grU
g"lb
hAb
halm
hapt
hEm
hEs
hef
heg
hEn
heNT
hepT
herf
herj
hifT
hll
hilk
hln
hink
hisk
hOt
hod
hUst
hUD
horst
hoS
hWd
hUld
h'lp
jamp
JAt
j*s
jelm
jEr
jld
jind
jer
jit
jom

n

24
20
23
12
19
17
21
20
18
9

13
23
23
24
17
14
17
18
14
23
15
24
23
24
23
24
15
10
22
24
12
19
22
11
24
24
19
19
21
23
22
16
20
23
23
24
23
22
23
22
15
24
20
22
13
23
23
24
13
17
17
23
23
20
24
22

RT

653
737
625
714
711
696
659
660
762
711
728
641
682
742
699
643
703
696
656
643
653
677
646
644
645
627
806
657
662
604
688
666
727
744
583
681
744
780
671
658
643
761
600
633
676
636
583
668
632
651
609
595
698
712
968
632
649
631
718
811
747
626
631
631
629
664
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Item

jope
jore
jum
jyre
kag
kail
karch
keace
kearn
kess
kie
kirth
kith
konze
koust
kurst
larb
larf
leige
lext
lirge
litz
loice
lorce
lorm
lourse
lourth
ludge
luzz
mact
mage
malve
manch
mangst
main
masp
meave
meeve
meird
meize
melch
melfth
mier
mim
mird
mirst
mish
miz
moax
modge
moft
moid
molf
motch
moung
mource
mourd
moy
muest
mulge
mulk
murd
myp
nadd
naise
narve
nault
neak
neld

Pron

JOp
jOr
fm
jlr
kag
kAl
korC
kEs
kern
kes
kl
kerT
kiT
konz
kWst
kerst
lorb
lorf
1EJ
lekst
lerj
Hts
lYs
lOrs
lOrm
lOrs
lerT
n
l"z
makt
mAj
malv
manC
maNst
morn
masp
mEv
mEv
mErd
mEz
melC
melfT
mEr
mim
merd
merst
miS
miz
mOks
moj
m*ft
mYd
m*lf
moC
mWN
mOrs
mOrd
mY
mUst
m'lj
nTlk
merd
Blip
nad
nAz
norv
n*lt
nEk
neld

n

23
24
23
21
23
22
21
18
17
23
21
23
20
21
17
23
23
24
18
22
22
24
24
24
24
17
8

23
20
20
19
14
20
17
22
23
22
22
18
11
24
20
15
23
23
23
23
20
23
22
23
23
22
22
8

18
16
24
16
21
20
24
16
24
19
23
21
24
22

RT

598
718
676
779
598
670
613
766
706
686
664
633
663
711
740
712
581
568
710
680
680
610
659
629
635
643
725
645
616
640
713
712
700
719
712
624
708
689
718
681
627
738
660
714
668
679
623
726
643
739
653
665
653
610
748
751
748
641
748
659
627
637
764
591
645
672
662
702
675

Item

nerr
nerth
nid
niest
nilth
ninx
nire
noil
nooth
norld
nounge
nouse
nowth
nube
nuck
nurge
padge
paff
pait
palk
pawk
ped
pelve
peme
pern
peud
pice
pidst
piege
pift
pight
plaive
plap
plear
plerk
plew
plewd
pling
plon
ploop
plourn
plown
plox
plue
plut
P°g
poin
poove
poss
pral
preadth
preel
prot
pude
puit
pult
pung
purn
pute
pymn
raim
ralp
ranee
rause
rawl
reast
redge
reeze
relte

Pron

ner
nerT
nid
nEst
nilT
ninks
nlr
nYl
nUT
nOrld
nWnj
nWs
nWT
nUb
n'k
nerj
paj
paf
pAt
p*k
p*k
ped
pelv
pEm
pern
pyUd
pis
pidst
pEj
pift
pit
plAv
plap
plEr
plerk
plU
plUd
pHN
plon
plUp
plOrn
plWn
ploks
plU
pl"t
P*g
pYn
pUv
pos
prol
predT
prEl
prot
pUd
pwEt
pit
p"N
pern
pyUt
pirn
rAm
ralp
rans
rWs
r*I
rEst
rej
rEz
relt

n

17
22
23
12
21
23
13
22
19
21
13
20
17
21
22
22
24
24
24
14
23
24
24
19
23
14
19
20
11
24
21
23
24
24
22
24
22
23
24
23
11
16
24
23
21
22
24
24
23
12
18
23
24
15
9

22
22
24
16
20
22
19
24
8

22
23
23
24
24

RT

626
648
612
789
739
709
708
694
719
716
745
689
835
647
696
657
594
559
591
621
616
615
638
700
616
768
653
730
831
666
751
685
611
643
603
660
647
686
613
633
662
689
581
644
605
631
635
643
667
646
725
676
605
647
921
706
647
609
630
723
621
647
629
646
626
721
606
623
658
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Item

rem
ret
ri
rield
riew
rike
ril
ringe
rive
rix
ronk
roo
roosh
rould
rounce
rud
rail
rund
rynch
saisle
sanse
scole
sera
seaf
seart
seb
sempt
sheapt
shearse
sheik
sial
sib
sidth
silm
simb
skose
slere
slote
smair
smalse
smapse
smaught
smead
smein
smill
smough
smoul
smuard
smuice
smuide
snass
snauve
sneed
sneue
snoam
snoud
snurr
sny
sobe
somp
sond
sorn
sorth
sount
spake
spathe

Pron

rem
ret
ri
rEld
ryU
rlk
ril
rinj
rlv
riks
r*nk
rU
rUS
rUld
rWns
r"d
r"l
r"nd
rinC
sAl
sans
skOl
scr*
sEf
sert
seb
sempt
SEpt
SErs
Selk
sll
sib
sidT
silm
sim
skOz
slEr
slOt
smAr
sm*ls
smaps
sm*t
smEd
smAn
smil
smW
smWl
smord
smUs
smUd
snas
sn*v
snEd
snU
snOm
snWd
sner
snl
sOb
somp
sond
sOrn
sOrT
sWnt
spAk
spAD

n

24
24
12
19
12
24
23
23
22
22
23
24
24
7

21
20
21
23
21
7

17
24
18
22
16
21
23
11
15
20
16
22
23
20
17
10
15
20
24
19
21
19
22
10
23
9
9

13
20
13
20
14
20
21
21
12
21
22
23
24
21
24
19
16
24
10

RT

562
548
676
703
937
592
651
635
623
573
597
609
620
723
657
637
593
630
761
911
686
740
792
753
823
689
730
927
842
745
757
687
784
708
760
825
741
782
770
812
892
842
729
890
766
792
746
793
952
858
752
815
713
820
830
730
737
849
701
690
716
648
694
674
766
727

Item

spauge
spaul
speight
spetch
spoan
spowl
spram
staltz
stamn
starp
steach
stearth
stimp
stoze
strop
sturch
sule
sump
sunge
surl
sutt
sym
sype
tace
laid
tark
tarmth
tarse
tatch
lays
tearch
tearl
teigh
teign
telp
terb
terve
thak
thealt
thoar
thout
thrax
thwee
tidge
tiece
tinse
tirl
tirt
titch
toal
toard
tob
tolve
lord
tori
torse
toubt
traph
trave
treathe
treek
treen
trest
troes
trome
trool

Pron

sp*j
sp*I
spAt
speC
spOn
spWl
spram
st*lts
stam
storp
stEC
sterT
stimp
stOz
strop
sterC
sUl
s'mp
s"nj
serl
s~t
sim
sip
tAs
t*ld
tork
tOrmT
tors
taC
tAz
terC
terl
tA
tAn
telp
terb
terv
Tak
Telt
TOr
DWt
Traks
TwE
tij
tEs
tins
terl
tert
tiC
tOl
tOrd
tob
tOlv
tOrd
tOrl
tOrs
tWt
traf
trAv
trED
trEk
trEn
trest
trOz
trOm
trUl

n

9
21
12
23
24
18
20
19
22
24
20
17
24
21
20
24
16
24
15
24
23
20
22
23
20
24
24
24
24
23
14
16
9

16
24
23
24
24
13
24
22
24
19
20
11
23
24
22
21
23
23
24
17
24
22
24
13
19
19
12
22
23
22
22
22
23

RT

857
749
943
805
713
764
728
823
749
715
784
830
760
685
820
726
827
710
754
667
739
692
725
642
636
581
736
624
666
660
720
692
856
820
643
578
620
687
796
682
741
691
828
676
785
662
658
671
675
599
615
577
646
591
598
624
833
710
644
734
653
691
661
753
682
672
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Item

troom
trouch
trunt
tuede
tulf
tunch
tusp
tymph
vaight
valf
vant
vaud
vect
veef
ver
vime
vinn
voe
voint
vor
vought
vour
vub
vyme
waith
week
weem
weeth
weg

Pron

trUm
trWC
tr'nt
tUd
tulf
fnC
t~sp
timf
vAt
v*lf
vant
v*d
vekt
vEf
ver
vim
vin
vO
vYnt
vOr
v*t
vUr
v"b
vim
wAT
wek
wEm
wET
weg

n

23
20
24
8

20
22
22
21
20
9

18
14
23
20
15
21
23
23
23
24
9
8

23
21
23
23
21
22
22

RT

657
649
630
740
648
632
650
770
911
697
640
702
624
726
634
734
661
684
737
615
746
746
704
709
661
653
665
671
627

Item

welse
wese
wesk
wict
wolt
wompt
worpse
wouge
wounge
woute
wug
wulch
wunk
wurve
yalt
yare
yarm
yied
yife
yin
yince
yoops
yothe
yus
zale
zigh
zisle
zuct
zuss

Pron

wels
wEz
wesk
wikt
wOlt
wompt
wOrps
wUj
wWnj
wUt
w~g
w"lC
w"nk
werve
y*lt
yAr
yorm
yEd
ylf
yin
yins
yUps
yOT
y~s
zAJ
zl
zll
z"kt
z~s

n

20
11
22
20
17
22
15
12
14
14
23
20
22
21
24
20
23
11
19
23
24
21
7

20
24
12
9

19
18

RT

681
755
661
732
617
585
673
682
724
784
614
634
646
684
636
634
621
723
672
650
673
659
628
670
712
754
776
779
772

Note. Pron = most common pronunciation; n = number of subjects out of 24 providing that
pronunciation; RT = reaction time (naming latency in milliseconds). Pronunciation key: A = a as
in PLAY; a = a as in BAT; E = ee as in BEET; e = e as in BET; O = o as in HOPE; o = o as in HOT;
I = i as in BITE; i = i as in BIT; U = oo as in BOOT; u = oo as in BOOK; W = ow as in HOW; Y =
oy as in BOY; " = u as in BUT; * = aw as in PAW; S = sh as in SHOE; C = ch as in CHEW; T = th
as in THIN; D = th as in THIS. This set of symbols is adapted from "A Distributed Developmental
Model of Word Recognition and Naming" by T»f. S. Seidenberg and J. L. McClelland, 1989,
Psychological Review, 96, p. 533. Copyright 1989 by the American Psychological Association.
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