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Abstract 

Most current models of word naming are restricted to processing monosyllabic words and 

pseudowords.  This limitation stems from difficulties in representing the orthographic and 

phonological codes for words varying substantially in length.  Sibley, Kello, Plaut, & Elman 

(2008) described an extension of the simple recurrent network architecture, called the 

sequence encoder, that learned orthographic and phonological representations of variable-

length words.  The present research explored the use of sequence encoders in models of 

monosyllabic and bisyllabic word naming. Performance in these models is comparable to other 

models in terms of word and pseudoword naming accuracy, as well as accounting for naming 

latency phenomena.  Although the models do not address all naming phenomena, the results 

suggest that sequence encoders can learn orthographic and phonological representations, 

making it easier to create models that scale up to larger vocabularies, while at the same time 

accounting for behavioral data. 
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For over 20 years, theoretical advances in the study of word reading have been marked 

by the development and refinement of computational models (e.g., McClelland & Rumelhart, 

1981; Seidenberg & McClelland, 1989; Plaut, McClelland, Seidenberg, & Patterson, 1996; Harm 

& Seidenberg, 1999; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Perry, Ziegler, & Zorzi, 

2007).  These models implement cognitive mechanisms thought to underlie reading and other 

tasks. The models are typically evaluated by their ability to simulate data from word naming, 

lexical decision, semantic decision, and other reading tasks.  Computational models have 

informed debates about the nature of the mapping between the written and spoken forms of a 

word (Kello, 2003; Kello & Plaut, 2003; Kello, 2006), the use of letter-to-sound correspondence 

rules (Coltheart et al., 2001), the use of lexical nodes (McClelland & Rumelhart, 1981; Kello, 

2006), the representation of semantics (Grainger & Jacobs, 1996;  Harm & Seidenberg, 2004), 

and the learning of word-specific information (Sibley, Kello, Plaut, & Elman, 2008), among other 

issues.    

At its core, word naming involves mapping sequences of letters onto sequences of 

sounds (typically construed as phonemes).  Mechanisms that map spelling to sound are greatly 

influenced by properties of their input and output representations, i.e., orthography and 

phonology, respectively.  For instance, the principal flaw in the Seidenberg and McClelland 

(1989) model was a limited capacity to generate correct pronunciations for pseudowords, 

which resulted from imprecision in its representations of orthography and phonology.  Plaut et 

al. (1996) addressed this limitation, which yielded models that produced more accurate 

nonword performance (see also Harm & Seidenberg, 1999).   
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Representations of orthography or phonology must code sequences of letters or 

phonemes that vary substantially in length.  Difficulties inherent to coding variable length 

sequences have led to several systems for representing written and spoken words. Such 

representational schemes are specified by the modeler prior to the learning process, in order to 

focus on other phenomena, such as properties of the mappings between codes.  This 

methodology does not address how the representations themselves are learned.  Most models 

have also been limited to monosyllabic words (but see Ans, Carbonnel, & Valdois, 1998).  In 

contrast, the current work explores a technique for learning lexical representations in the 

context of reading acquisition, while at the same time extending the scope of the model to 

bisyllabic words.   

We present connectionist models of single word naming that demonstrate how simple 

recurrent networks (SRNs; Elman, 1990) can learn representations that overcome difficulties in 

representing words of variable length.  This work is essentially an extension of the parallel 

distributed processing (PDP) models developed by Seidenberg and McClelland (1989), Plaut et 

al. (1996), and others.  Utilizing SRNs enables our model to map between sequences of letters 

and phonemes for both monosyllabic (Simulation 1) and bisyllabic (Simulation 2) words.  These 

models are benchmarked against naming latency data from the English Lexicon Project (ELP; 

Balota, Cortese, Hutchison, Neely, Nelson, Simpson, & Treiman, 2002).  With respect to item 

variance in naming latencies, we show that model performance is comparable to the 

connectionist dual-process plus (CDP+) model reported by Perry et al. (2007).  We conclude 

with a discussion of how these models may be improved and extended to handle full-scale 

English corpora. 
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Representing Sequences for Word Naming 

 English is difficult to read due to the lack of a one-to-one relationship between letters 

and phonemes.  Multiple letters may correspond to one phoneme (e.g. PH corresponds to /f/ in 

SPHINX), and one letter may correspond to multiple phonemes (e.g. X corresponds to /ks/ in 

SPHINX). This many-to-many relationship can be partially addressed by grouping letters into 

graphemes like PH that tend to correspond to individual phonemes (graphemes may also 

include non-adjacent letters like A_E to handle the silent E in words like MALE).  This solution is 

limited, however, because letters should not always be parsed into graphemes, as with the PH 

in UPHILL and A_E in MALEVOLENT.   

More generally, graphemes correspond to different phonemes in different contexts (e.g. 

TOUGH versus THROUGH).  These contextual dependencies cannot be handled by a process 

that operates serially over individual letters or graphemes.  Morphological units may span 

multiple letters and graphemes, and lexical information (e.g., semantics) spans entire words.  

So the reading process seems to have access to a word’s full orthography and phonology.  To 

date, most models of word naming utilize slot-based representations to create representations 

that bind letters and their positions (Seidenberg & McClelland, 1989; Plaut el al., 1996; Harm & 

Seidenberg, 1999; Coltheart et al., 2001; Perry et al., 2007).   Slot-based representations 

addressed contextual dependencies by assigning letters or letter clusters (or phonemes or 

phoneme clusters) to particular positions, such as A in the first position of a word, or NG at the 

end of a word. 
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Slot-based representations have been used with notable success in simulations of 

monosyllabic reading, but these representations do not easily scale to multisyllabic words.  

Learning about letters or letter units will not readily generalize across positions when units are 

position-specific; this is referred to as the dispersion problem.  Consider a connectionist model 

in which the letter A is represented separately for each possible position in a word.  Learning on 

connection weights associated with “A” in one position will be independent of those associated 

with “A” in other positions unless additional mechanisms are proposed.  To alleviate the 

dispersion problem, Plaut et al. (1996) used slots for onsets, vowel clusters, and codas, instead 

of individual letter positions.  Thus the letter R, for instance, is not represented by separate 

units for the onsets R, TR, and SPR.  The problem still exists, however, for consonants in onsets 

versus codas (e.g., separate units represent the R in RAP versus PAR).  This has posed a major 

problem for any scheme that attempts to integrate the learning of orthographic and 

phonological representations with reading acquisition. Moreover it is exacerbated as syllables 

are added to form multisyllabic words, and so has restricted models to simulating monosyllabic 

reading. 

Including monosyllabic and multisyllabic words in a single model also engenders an 

alignment problem:   Letters and phonemes in words of different lengths may not align 

depending on how positions are represented.  The consequence is that the dispersion problem 

manifests differently depending on the representation of position.  If the letters in a pair of 

different length words are left-aligned, then the ends may share no similarity (e.g., SING and 

PLEASING) and so learning about suffixes and other word-final regularities will be impaired.  If 
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right-aligned, then learning about prefixes and word-initial regularities will be dispersed (e.g., 

CAT and CATAPULT). 

A number of alternatives to slot-based representations have been proposed, including 

wickelfeatures (Wickelgren, 1969), open bigram codes (Grainger & Whitney, 2004), spatial 

codes (Davis, 1999), holographic codes (Levy, 2007; Plate, 1994), and recursive auto-associative 

memories (Pollack, 1990).  Of these, only wickelfeatures have been used in a model of word 

naming (Seidenberg & McClelland, 1989), but these have representational and empirical 

shortcomings (Plaut et al., 1996).  Schemes have not been designed for learning open bigram 

codes, spatial codes, and holographic codes are hence they do not yet explain a sensitivity to 

statistical dependencies among letters or phonemes.  Without proposing additional 

mechanisms, these codes are insensitive to orthotactic and phonotactic variables that affect 

word naming performance (Bailey & Hahn, 2001).  Recursive auto-associative memories are ill-

suited to representing words because they impose a prescribed hierarchical structure onto 

sequences, whereas orthographic and phonological structures are variable and learned.   

One method for learning sequential information is the SRN (Elman, 1990).  SRNs are 

connectionist models that process sequences one element at a time.  Unlike slot-based 

representations, SRNs learn to integrate sequential information through time.  However, as 

originally designed, SRNs do not actually learn representations of sequences, i.e., SRNs do not 

learn representations that encode all the elements of a sequence and their positions.  Instead, 

SRNs predict subsequent elements (Elman, 1990), activate target representations associated 

with sequences (Dell, Juliano, & Govindjee, 1993), or generate target sequences associated with 

input representations (Plaut & Kello, 1999).   
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Motivated by the need for models of word naming that process mono- and multisyllabic 

words, we recently extended the SRN architecture to learn orthographic and phonological 

representations (Kello, Sibley, & Colombi, 2004; Sibley et al., 2008).  The basic function of our 

sequence encoder architecture is to encode an input sequence into a “plan” for generating an 

output sequence.  In connectionist terms, an encoder SRN integrates an input sequence into a 

distributed representation that is learned in the service of generating a target sequence via a 

decoder SRN (see Figure 1).  Even when input and output sequences vary in length, the 

sequence encoder learns normalized (fixed-width) representations. 

To learn representations the sequence encoder was trained to store and reproduce 

input letter or phoneme sequences as output sequences.  Two separate sequence encoder 

models, one for orthography and the other phonology, learned representations for over 70,000 

English words ranging from 1 to 18 letters or phonemes in length.  Learning generalized well to 

untrained letter strings (pseudowords) that were well-formed, i.e., conformed to graphotactic 

and phonotactic regularities.  Learning did not generalize well to ill-formed pseudowords (e.g., 

SBTAMVLI, OEWPN), which demonstrates that representations were shaped by statistical 

dependencies among sequence elements. 

 

Large-Scale Modeling of Word Reading 

The previously mentioned sequence encoders simulated wordform learning, rather than 

word naming, because orthographic representations were not mapped onto phonological 

representations.  Sequence encoders have been integrated into a large-scale model of lexical 

processing designed to simulate both word naming and lexical decision tasks (Kello, 2006; 
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Sibley, 2008).  Unlike previous PDP models of word naming, the mapping from spelling to sound 

in these models were not accomplished via learned, distributed representations.  Instead, an 

orthographic sequence encoder was connected to a phonemic sequence encoder via lexical 

nodes, where each node represented an individual word.  These intermediate lexical nodes 

facilitated simulation of word recognition behaviors and helped us explore whether graded 

activation across 60,000 lexical nodes could support the processing of novel inputs.  In essence, 

this lexical layer was designed to achieve an analogy-based or similarity-based process of 

generalization akin to the proposition of Glushko (1979). 

These large scale models accounted for notable amounts of variance in word naming 

and lexical decision data compiled in the ELP database (Balota et al., 2002).  For over 28,000 

mono- and multisyllabic English words, the model accounted for 33.9% of item variance in 

naming latencies and 41.6% of item variance in lexical decision latencies (Sibley, 2008).  This 

model had some capacity to generate pseudoword pronunciations (37.0% of the monosyllabic 

nonwords used by Seidenberg et al. (1994) and 25.1% of the mono- and multisyllabic nonwords 

used by Sibley et al. (2008)), but not at a level approaching a skilled reader.   

These large-scale simulations demonstrated that learned orthographic and phonological 

representations could be integrated into a model of word reading and recognition. These 

representations helped break long-standing barriers to simulating naming and lexical decision 

on a scale that approaches the vocabulary of skilled English readers.  Finally, these models 

accounted for substantial amounts of item variance in naming and lexical decision data from 

the ELP database using relatively few mechanisms (e.g., sigmoidal and radial basis processing 

units, SRNs, backpropagation learning, and a single processing pathway between orthography 
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and phonology) and even fewer free parameters (e.g., two scaling exponents, one for 

converting word frequencies to error scalars, the other for converting output activations to 

reaction times).   

The primary question raised by these large-scale simulations was whether 

representations learned by sequence encoders could support pseudoword naming.  Poor 

generalization performance could have resulted from the use of lexical nodes, because novel 

inputs lack dedicated nodes. Or poor generalization could result from the staged development 

of the model, because learning of orthographic and phonological representations occurred 

prior to, and independent of learning the mapping between them.  Or the shear scale of the 

model could have caused difficulties in generalization.   

The two simulations reported herein explored whether sequence encoders could 

simulate speeded naming data on a relatively small scale (about 5000 monosyllabic words in 

Simulation 1), including pseudoword naming, and whether this modeling approach can scale up 

to about 13,000 mono- and bisyllabic words.  Both simulations used learned, distributed 

representations to map orthographic representations onto their phonological counterparts.  

Also, learning of graphotactic and phonotactic information occurred while the models learned 

to map between orthography and phonology.  This allowed us to specifically test the ability of 

sequence encoders to support pseudoword naming.   

 

Simulation 1:  Monosyllabic Word Naming 

 In Simulation 1, a sequence encoder model was trained to map sequences of letters 

onto sequences of phonemes for a corpus of monosyllabic words.  The corpus was very similar 
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to one used for the CDP+ model so that Simulation 1 results could be directly compared with 

the extant model that accounts for the most variance in monosyllabic naming latencies in the 

ELP database.    

 

Method 

 Model Architecture and Representations.  In general, the groups of units and their 

connectivity matched the architecture shown in Figure 1, and described in detail in Sibley et al. 

(2008).  There were 250 units in each context group and hidden group, and 500 units in the 

sequence representation group.  The only qualitative difference between the sequence encoder 

architecture in Figure 1 and the present model was in the input and output representations.   

Inputs and outputs were the same in the original sequence encoder, whereas in the present 

model, inputs were orthographic and outputs were phonological. 

 Another difference was in the way that letters and phonemes were coded.  In previous 

sequence encoders and large-scale models, input and output groups consisted of 26 letter units 

or 39 phoneme units, plus an “end-sequence” unit.  Input and output sequences were 

processed one letter or one phoneme at a time, for words from 1 to 10 letters (1 to 13 

phonemes) in length.  Encoding-decoding accuracies fell off as a function of length, partly 

because error signals needed to propagate further back in time for longer sequences, and partly 

because the number of training words decreases as length increases beyond 7 letters.  This 

effect of sequence length suggests that performance should improve if lengths are shortened. 

 One aspect of the present simulation that served to shorten sequence lengths was to 

assign sequence elements to vowel-consonant (VC) clusters, rather than individual letters or 
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phonemes.  Parsing a sequence of letters or phonemes into VC clusters is a simple, 

unambiguous process, and it substantially reduces sequence lengths without restricting word 

lengths.  Letter and phoneme sequences were parsed left-to-right, allowing for the possibility of 

no vowel at the beginning of a sequence and no consonant at the end of a sequence.  To 

illustrate, SAVED was parsed as S-AV-ED (no initial vowel), AURA was parsed as AUR-A (no final 

consonant), /sAvd/ was parsed as /s-Avd/, and UPHILL was parsed as UPH-ILL.  Comparing 

SAVED with /sAvd/ shows that VC clusters did not necessarily align between orthography and 

phonology, and the UPHILL example shows that VC clusters did not necessarily align with 

graphemic, phonemic, and morphemic structures.   

 We consider VC clusters to be convenient abstractions for purposes of implementation.  

They are not meant to correspond to eye fixations used to perceive written words, or 

articulatory sequences used to speak words.  They are frames used to feed information into the 

sequence encoder so that representations can be learned.  This learning should be affected by 

statistical dependencies among letters and phonemes, regardless of how the dependencies are 

parsed (Sibley et al., 2008).  Ultimately, the sequence encoder learning task requires that all 

letters or phonemes and their positions are encoded in the learned representations, regardless 

of how sequences are parsed.  Thus learned representations, rather than the input and output 

sequencing, carry the most theoretical weight in the model. 

 Orthographic VC input clusters consisted of 26 letter units plus 153 open bigram units, 

25 of which were VV bigrams and the remaining 133 were CC bigram units.  VC and CV bigrams 

were not included because they were redundant, i.e. VC clusters were uniquely determined on 

the basis of VV, CC, and letter units.  For example, the orthography for EAST consisted of one 



Modeling Mono- and Bisyllabic Naming  13 

 

VC cluster that activated the E, A, E-A, S, T, and S-T input units.  The orthographic sequence for 

EASTERN consisted of a second VC cluster ERN that activated the E, R, N, and R-N units, and the 

two VC clusters were input to the model in sequence.  Phonemic VC clusters were created in 

the same way, except there were 39 phoneme units, 114 CC biphone units, and one end-

sequence unit.  There were no VV biphone units because diphthongs were coded as individual 

vowels, and any remaining adjacent vowels were parsed into separate VC clusters.  For 

instance, the phonological wordform /plAR/ (“player” with a vocalic r) was parsed as /plA-R/.  

The end-sequence unit was activated simultaneously with the final VC cluster of a sequence 

(i.e., it was not parsed into its own VC cluster). 

  Training Corpus and Procedure.  A total of 6,116 English monosyllabic words were 

chosen for the training corpus.  This corpus was created by intersecting the 7,441 words in the 

CDP+ training corpus with the CMU pronunciation dictionary (for phonemic transcriptions) and 

the Wall Street Journal corpus (for word frequency estimates).  Words ranged from 1 to 7 

letters and 2 to 7 phonemes in length.   

 The procedure for presenting the model with a given input-output pair from the training 

corpus is outlined in the caption of Figure 1, and described in detail in Sibley et al. (2008).  The 

forward propagation of activation and backpropagation of error was governed by connectionist 

algorithms used in many previous models of word naming:  For all hidden units and output 

units (including sequence representation units), net inputs were computed as the dot product 

of their incoming activation vector and weight vector,  , and activations were 

computed as a sigmoidal function of their net inputs (i.e., the logistic for output units, and the 

hyperbolic tangent for hidden units).  Activation vectors over context units were set equal to 
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activation vectors of their corresponding hidden units from the previous time step of 

processing.    

Error between output unit activations and their targets was computed using two 

different metrics.  Early in training, squared error ( ) was computed and the 

backpropagation algorithm (Rumelhart, Durbin, Golden, & Chauvin, 1995) was used to calculate 

weight derivatives.  Cross entropy error ( ) was computed 

later in training to increase pressure for outputs to be close to their targets.  Also, errors were 

not calculated early in training when outputs were within 0.2 of their targets, and this “zero 

error radius” was removed later in training to refine outputs.  Throughout training, errors were 

scaled by the square root of the printed frequency of the word as estimated in the Wall Street 

Journal Corpus. 

Each input-output pair was sampled randomly from the training corpus, input unit 

activations were propagated forward, and output unit errors were backpropagated to calculate 

unit and weight derivatives (see Sibley et al., 2008).   Connection weights were initially set to 

values sampled randomly from a flat distribution between -0.1 and 0.1, except for weights 

projecting from input units, for which the range was -0.4 to 0.4.  This larger range ensured 

different inputs lead to different patterns of activation over the sequence representation units 

at the beginning of training.  Weight derivatives were accumulated every 1000 samples and 

then applied to weights after being scaled by a learning rate parameter than ranged from 5e-07 

at the beginning of training, down to 1e-07 by the end of training.  Training was halted after 

20,000 weight updates, at which point learning asymptoted. 
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Simulation 1 Results and Discussion 

To assess performance, a given words orthographic sequence was input by the model, 

and phonemic VC clusters were generated until activation of the end-sequence unit exceeded 

0.5.  Each VC cluster was converted into a phoneme sequence by choosing the most highly 

activated vowel unit (unless all vowel unit activations were < 0.05, in which case no vowel was 

chosen), and the target consonant vector (including the null vector for no consonants) that 

most closely matched the output consonant vector.  Matching was based on the square root of 

activation values in order to give more weight to weakly activated units.  This weighting scheme 

was used because any given consonant unit or consonant bigram unit was activated for only a 

small proportion of VC clusters, which biased their activation values towards zero.  Phoneme 

sequences were concatenated across VC cluster sequences to generate a complete phonemic 

output sequence for a given orthographic input. 

A given phonemic output sequence was judged to be correct only if it perfectly matched 

its target sequence.  At the end of training, the model produced correct sequences for 97.4% of 

the words in the training corpus.  Naming latency for a given output sequence w was computed 

as , where  is activation of an activated output unit (  > 0.05) on 

sequence step k, E() is the average of all activated units on step k, and summation is across 

steps.  This measure was designed to estimate the “confidence” of model outputs (i.e. strength 

of activation) as a proxy for naming latency. 

Simulated latencies were regressed against mean naming latencies from the ELP 

database for two different subsets of words, and the resulting R
2
 values are shown in the 

Simulation 1 column of Table 1.  The monosyllabic subset was the intersection of our training 
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corpus with the naming latencies present in the ELP database, and a monomorphemic subset 

used by Yap (2007) in regression analyses of the ELP database.  By comparison R
2
 values for the 

CDP+ model, also shown in Table 1, are slightly higher.  However, this contrast should be 

interpreted carefully as the intent and scope of these models are quite different.  Perry et al. 

(2007) present CDP+ as a computationally implemented theory of word reading and recognition 

behaviors.  Simulation 1 is only intended to explore the sequence encoder’s ability to learn 

about orthographic and phonological representations and the mapping between them.  

Simulation 1 does not, for instance, include word recognition capabilities that presumably 

affect word naming performance.  In contrast, CDP+ is designed to simulate word recognition 

and other behaviors like priming.  Nonetheless, CDP+ offers a useful baseline for interpreting 

Simulation 1’s ability to address several behavioral phenomena.     

 We also tested whether our sequence encoder model can generate acceptable 

pronunciations of untrained letter sequences, i.e., pseudoword naming.  Monosyllabic 

pseudowords from the naming experiments reported by Seidenberg et al. (1994) were used to 

test the model.  Again, as shown in Table 1, Simulation 1’s performance was comparable to, but 

slightly lower than, performance of the CDP+ model.  A more challenging test of generalization 

abilities was offered by the stimuli presented in Rastle & Coltheart (1998).  Each of these 

“whammy” pseudowords includes a digraph, which means the model must associate two 

letters with a single phoneme in a novel context.  For these more challenging pseudowords, 

Simulation 1, produced 83.3% acceptable pronunciations, while Perry et al. (2007) report that 

CDP+ produced 91.7% acceptable pronunciations.  
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Models of word naming are also evaluated in terms of their ability to simulate the 

effects of lexical variables known to correlate with naming latency.  Table 2 displays bivariate 

effect sizes, in terms of R
2
, between each individual psycholinguistic variables and naming 

latencies, for monosyllabic words from three different sources:  The ELP database, the CDP+ 

model, and Simulation 1 (statistically significant effects, p < .05, are denoted with an *).  Results 

show that Simulation 1, CDP+, and behavioral (ELP) latencies are all correlated with measures 

of frequency, length, neighborhood, and consistency.  

Directions of the effects just listed were mutually consistent across latency sources. The 

CDP+ model generated an overly strong frequency effect and Simulation 1 generated a weak 

length effect, both relative to ELP latencies.  The effects of orthographic and phonological 

neighborhood were assessed with 4 different terms.  Coltheart’s orthographic and phonological 

N is calculated as the number of English words a given string can be transformed into, by 

changing a single letter or phoneme.  Levenshtein distance is the average of the minimum 

number of letters or phonemes that must be added, removed, or substituted to transform a 

word into its nearest 20 neighbors (Yarkoni et al., submitted).  Again, Simulation 1 and CDP+ 

exhibit effects of these variables that are similar to ELP latencies, though both are overly 

sensitive to phonological neighborhood size.  Consistency was assessed using 3 different 

measures, provided by Yap (2007).  The first two measures compute the ratio of a words friends 

(similarly spelt words, receiving similar pronunciations) to its total number of orthographic 

neighbors, with respect to either a words onset or rhyme.  Levenshtein consistency is calculated 

as the ratio of a word’s Levenshtein orthographic distance to its Levenshtein phonological 

distance, where less consistent words tend to have different orthographic and phonological 
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neighborhood sizes.  CDP+ underestimates the effects of onset consistency, while Simulation 1 

overestimates the effect of Levenshtein consistency.  

We also tested five interaction effects and found a more qualitative distinction between 

the models.  We calculated variables for the interactions of frequency with length, 

neighborhood, and consistency by multiplying the respective variables.  As suggested by Cohen 

et al (2003) and applied by Yap (2007), interactions were tested using a hierarchical regression 

model.  The two main effect variables were first entered into the model, followed by the 

interaction term.  Differences in R
2
 between the first and second steps are used to estimate the 

interaction effect size.  Results showed Simulation 1 and behavioral latencies produce similar 

trends for all five interaction variables, while CDP+ and behavioral latencies only correspond for 

three interactions.  

In summary, Simulation 1 established that the sequence encoder has several desirable 

qualities for modeling word and pseudoword naming.  Using very few qualitatively distinct 

mechanisms and free parameters, model performance in Simulation 1 was comparable to the 

CDP+ model.  In particular, the sequence encoder comprises the following standard 

connectionist mechanisms: sigmoidal units, connection weights, a sequencing mechanism, an 

error-driven learning mechanism, representations of letters and phonemes, word frequencies, 

and an algorithm for converting model outputs to phonemic responses and naming latencies.  

The free parameters are numbers of hidden units and the activation threshold of 0.05, and only 

the latter was tuned to maximize performance. 

By comparison, the CDP+ model has its own version of all of the above mechanisms in 

its assembly route alone.  The model also includes additional mechanisms for graphemic 
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parsing, numerous parameters on its lexical route, plus mechanisms for coordinating the two 

routes.  The consequence is at least 25 free parameters that must be tuned, in addition to 

numbers of hidden units.  As for the ability of the two models to account for benchmark effects 

in word naming, the effect size analyses indicate again that Simulation 1 is comparable to the 

CDP+ model.  This suggests that a scheme for learning orthographic and phonological 

representations, like the Sequence Encoder could be very usefully integrated into a more 

general model of the lexical system.  

 

Simulation 2:  Mono and Bisyllabic Word Naming 

Perhaps the biggest advantage of the sequence encoder model over previous models of 

word naming is its ability to scale up to process multisyllabic words without adding new 

mechanisms.  Here we report the results of a sequence encoder model trained on a corpus of 

monosyllabic and bisyllabic words (longer words were excluded to minimize computational 

demands), and we compare results (when possible) with Simulation 1 and the CDP+ model.   

 

Method 

 Model architecture and representations were the same as in Simulation 1, with the 

following exceptions.  The number of open bigram and biphone units was increased to cover 

the expanded space of possibilities (totals were 256 bigram units and 266 biphone units), and 

two stress units were added to the phonemic output group.  Stress units applied to the single 

vowel per VC cluster and represented levels of primary, tertiary, and no stress (two, one, and 
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zero units activated, respectively).  Also, there were 300 units in each context group and each 

hidden group, and 600 units in the sequence representation group. 

The training corpus included all monosyllabic words from Simulation 1, plus 8,000 

bisyllabic words.  The latter were chosen by taking all bisyllabic words in the ELP database less 

than 9 letters in length, intersecting them with the CMU pronunciation dictionary, and choosing 

the 8,000 most frequent words according to the Wall Street Journal corpus.  Of the remaining 

2165 lowest frequency words, 1845 were used as pseudowords by withholding them from the 

training corpus.  The remaining lower frequency words were discarded because they had 

unusual spellings in terms of trigram frequencies.  The model was trained for 30,000 weight 

updates, at which point learning asymptoted. 

 

Results 

 Model outputs were converted into phonemic responses using the same procedures as 

in Simulation 1; with the addition of converting stress unit activations to stress levels (stress 

units were also included in the naming latency measure).  The model generated correct 

responses for 99.8% of the words in the training corpus, and Table 1 shows percentages correct 

for the Seidenberg et al. (1994) monosyllabic pseudowords and our proxy corpus of bisyllabic 

pseudowords (i.e., untrained words).  Performance was slightly lower on monosyllabic 

pseudowords compared with Simulation 1, and 19.3 percentage points lower on bisyllabic 

pseudowords compared with monosyllabic pseudowords. 

 Table 1 also shows percentages of ELP naming latency variance accounted for by 

Simulation 2.  R
2
 values were again comparable to, but slightly lower than those of Simulation 1 



Modeling Mono- and Bisyllabic Naming  21 

 

for the two monosyllabic word sets.  R
2
 was slightly highly for the full bisyllabic set compared 

with the monosyllabic sets, and 8.6 percentage points higher for the monomorphemic bisyllabic 

word set compared with the full bisyllabic word set.  Finally, the same lexical variable analysis 

was conducted as in Simulation 1, with the addition of stress typicality and syllabic length 

variables.  Stress typicality values were set equal to the probability that a given word would 

take on its stress pattern, given its grammatical category (grammatically ambiguous words were 

arbitrarily assigned a single category).  Effect sizes for each variable were statistically significant 

and directionally consistent for the two sources of latency data, except for the frequency by 

consistency effects which did not reach statistical significance for simulated of behavioral 

latencies.  Notably, Simulation 2 tended to overestimate the effects of most variables, relative 

to the ELP data.  This could occur because human latencies include many sources of error 

variance (i.e., individual differences and measurement error), which do not contribute to the 

simulated latencies.  

In summary, the results of Simulation 2 showed that the sequence encoder can be used 

to simulate word and pseudoword naming data for tens of thousands of monosyllabic and 

bisyllabic words, including the effects of multisyllabic variables like syllabic length and stress 

typicality.  The ability to simulate these two effects of bisyllabic naming, are notable as we did 

not include any new mechanisms specifically for this purpose. As a result, these models stand 

as counter examples to claims that syllabic length effects imply a functional role for syllables 

(e.g., New, Ferrand, Pallier, & Brysbaert, 2006) and notions that stress assignment requires 

complex special purpose mechanisms (e.g., Rastle & Coltheart, 2000). Pseudoword naming 

accuracy decreased for longer words, and such length effects are standard in speeded naming 
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tasks.  However, it is likely that performance would not decrease as much as in the present 

simulation if skilled readers were to name bisyllabic pseudowords from our corpus.  Thus an 

important task for future modeling work will be to investigate methods of improving 

pseudoword naming. 
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General Discussion 

 The simulations reported herein demonstrated how orthographic and phonological 

representations can be learned in models of monosyllabic and bisyllabic naming.  This work 

represents a step towards understanding how learning about orthographic and phonological 

forms of words can be integrated with learning about reading.  Further, these models 

addressed substantial amounts of behavioral data.  This includes phenomena specific to 

multisyllabic word naming, in particular stress assignment and the effect of syllabic length.  

Our prior large-scale models utilizing this representational scheme accounted for 

substantial variance in naming and lexical decision data for nearly 30,000 words, but the 

mapping from spelling to sound did not generalize well to pseudowords.  The present work 

showed that this lack of generalization was not due to the sequence encoder, in spite of recent 

criticism that sequence encoders do not effectively solve problems with slot-based codes 

(Bowers & Davis, in press).  Pseudoword naming was successfully simulated in that the 

sequence encoder generated acceptable pronunciations for most novel monosyllabic and 

bisyllabic inputs. 

 The sequence encoder scaled up from monosyllabic to bisyllabic naming with no 

additional assumptions, mechanisms, or parameters.  The same model architecture and 

procedure could also be applied to multisyllabic words of arbitrary lengths, but current and 

previous findings (Sibley et al., 2008) indicate the ability to read pseudowords would degrade as 

their length increased.  The problem is that there are few long words in any given corpus 

relative to the exponential growth in possible letter sequence space as length increases.  We 

briefly outline three possible approaches to this issue. 
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 One approach is to abandon vector-based representations in favor of structured 

representations (Markman, 1999).  This approach would require a theoretical framework for 

modeling the learning of structured representations, and the mapping of one kind 

(orthography) to another (phonology).  A second approach would be to modify the sequence 

encoder in way that effectively shrinks the sequence space, and/or more fully samples from this 

space.  The use of VC clusters is an example of this approach, and one could also imagine a 

hierarchy of sequence encoders in which models at higher levels learn to encode sequences of 

representations learned at lower levels.  A third approach would be to claim that sequence 

encoders apply only to letter strings perceived in a single eye fixation, which would limit the 

length of sequences to be processed (see Plaut, 1999).  Letter strings that require multiple 

fixations would require an additional assembly process of some kind. 

 Another issue raised by our findings is whether sequence encoder models can be 

extended to simulate both naming and lexical decision data.  The present models distinguish 

words from pseudowords to slight degree in that simulated word responses are faster and 

more accurate, on average, compared with pseudowords.  Lexical decisions, however, require 

nearly perfect discriminations between known and novel stimuli.  In PDP models like the 

sequence encoder, the ability to generalize training on words to pseudowords runs directly 

counter to the discrimination of words from pseudowords.  The simulation of this and other 

behaviors require additional mechanisms, for instance an implemented semantic layer of 

representations. 

 As discussed earlier, sequence encoders can be incorporated into larger models of word 

reading that also include lexical and/or semantic pathways of processing, in which case the 
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latter can simulate lexical decisions (Coltheart et al., 1993, 2001; Perry et al., 2007; Plaut et al., 

1996; Seidenberg & McClelland, 1989).  The alternative is to posit a lexical pathway that can 

simulate both lexical decision and word naming tasks (Glushko, 1979; Kello, Sibley, & Plaut, 

2005).  Large-scale models implementing this alternative successfully simulated lexical decisions 

(Kello, 2006; Sibley, 2008), but not pseudoword naming.  The present simulations indicate that 

the problem with pseudoword naming was not in using sequence encoders.  Further work is 

necessary to determine how models of orthographic and phonological learning, like the 

sequence encoder, can be best integrated with more complete theories of the lexical system.   
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Table 1.  Model performance for words and nonwords 

Percent Item Variance Accounted For 

Word Sets N 
CDP+ Simulation 1 Simulation 2 

Monosyllabic  5,191 18.4% 16.4% 14.7% 

Monomorphemic 
Monosyllabic 

3,141 22.0% 19.1% 14.4% 

Mono & Bisyllabic  13,191 NA NA 16.6% 

Monomorphemic  
Mono & Bisyllabic  

5,718 NA NA 25.2% 

   

Percent Acceptable Pronunciations 
Nonword Sets N 

CDP+ Simulation 1 Simulation 2 

Monosyllabic  
(Seidenberg et al., 1994) 

589 93.8% 86.8% 84.7% 

Bisyllabic  
(withheld from training) 

2,164 NA NA 65.0% 
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Lexical Variable  ELP CDP+ Sim. 1 

Frequency .191* .429* .203* 

Orthographic length .131* .150* .057* 

Coltheart’s Orthographic N .112* .109* .116* 

Coltheart’s Phonological N .046* .078* .087* 

Levenshtein Orthographic Distance .149* .154* .158* 

Levenshtein Phonological Distance .125* .142* .193* 

Onset Consistency .031* .004* .068* 

Rhyme Consistency .000 .000 .008 

Levenshtein Consistency .001* .005* .031* 

Frequency * Orthographic length .019* .001 .014* 

Frequency * Coltheart’s N .013* .000 .014* 

Frequency * Onset Consistency .000 .000 .000 

Frequency * Rhyme Consistency .000 .000 .000 

Frequency * Levenshtein Consistency .000 .000 .000 

 

Table 2:  Effect sizes (R
2
) of lexical variables for monosyllabic ELP latencies, CDP+ latencies, and 

Simulation 1 latencies 
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Lexical Variable  ELP Sim. 2 

Frequency .216* .268* 

Orthographic length .146* .212* 

Syllabic length .081* .207* 

Coltheart’s Orthographic N .130* .258* 

Coltheart’s Phonological N .093* .293* 

Levenshtein Orthographic Distance .177* .342* 

Levenshtein Phonological Distance .172* .379* 

Onset Consistency .046* .086* 

Rhyme Consistency .030* .096* 

Levenshtein Consistency .063* .194* 

Stress typicality .039* .114* 

Frequency * Orthographic length .017* .013* 

Frequency * Coltheart’s N .023* .020* 

Frequency * Onset Consistency .000 .000 

Frequency * Rhyme Consistency .000 .000 

Frequency * Levenshtein Consistency .000 .000 

 

Table 3:  Effect sizes (R
2
) of lexical variables for bisyllabic ELP latencies and Simulation 2 

latencies 
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Figure 1.  General sequence encoder architecture.  Inputs patterns are presented sequentially 

and integrated at the first sequence representation group to generate a learned representation 

at the end of the input sequence.  The sequence representation is then copied to the second 

sequence representation group and used as a plan representation to generate an output 

sequence.  Error between output and target sequence is backpropagated and summed at the 

sequence representation units.  This summed error is used as a target signal while the input 

sequence is replayed through the Encoding SRN, and error is backpropagated from the 

sequence representation units.  Context units and hidden units are computed as in the 

standard SRN architecture. 


