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Abstract

The mechanisms underlying nonword pronunciation have a been a focus of debates over dual-route and connection-
ist models of reading aloud. The present study examined two aspects of nonword naming: spelling-sound consistency
effects and variability in the pronunciations assigned to ambiguous nonwords such as MOUP. Performance of a parallel
distributed processing model was assessed over multiple runs, representing multiple subjects with varying reading expe-
rience. The model provided a good account of behavioral data concerning these phenomena. In contrast, the Dual
Route Cascaded model does not produce consistency effects and does not account for the alternative pronunciations
that subjects produce. The results highlight the importance of considering multiple aspects of a phenomenon such as
nonword naming in assessing computational models.
� 2005 Elsevier Inc. All rights reserved.
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Word and nonword reading are among the most
extensively studied areas in cognitive science and neuro-
science (see Posner, Abdullaev, McCandliss, & Sereno,
1999; Rayner, Foorman, Perfetti, Pesetsky, & Seiden-
berg, 2001 for overviews). Although several word read-
ing models have been proposed, considerable attention
has focused on the contrast between dual-route (Colt-
heart, Curtis, Atkins, & Haller, 1993; Coltheart, Rastle,
Perry, Langdon, & Ziegler, 2001) and connectionist (see
Harm & Seidenberg, 1999, 2004; Plaut, McClelland,
Seidenberg, & Patterson, 1996; Seidenberg & McClel-
land, 1989 for discussion) approaches, both of which
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have evolved over many years. In the present article
we consider how recent versions of these models fare
with respect to the task of reading nonwords aloud, a
task that has long been used to assess their adequacy
(Besner, Twilley, McCann, & Seergobin, 1990; Seiden-
berg, Plaut, Petersen, McClelland, & McRae, 1994).

The dual-route model of reading aloud (e.g., Colt-
heart et al., 2001) holds that pronouncing letter strings
(words and nonwords) involves a lexical route consisting
of knowledge of individual words, and a nonlexical
route consisting of rules for translating spellings to
sounds. Words whose pronunciations violate the rules
(‘‘exceptions’’ such as PINT) can only be pronounced
correctly via the lexical route. Nonwords (such as
NINT) can only be pronounced using the rules. The cen-
tral dogma of the dual-route approach (Seidenberg,
ed.
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1995) is that the two routes are required to account for
the ability to read these differing types of stimuli.1

In the Dual Route Cascaded (DRC) model (Colt-
heart et al., 2001), the lexical route is construed as an
associative network with nodes corresponding to words;
it is sensitive to lexical statistics (e.g., the frequencies of
words, their orthographic and phonological similarity to
one another). The sublexical route operates categorically
and deterministically, applying rules that state the valid
correspondences between spelling and sound but
abstract away from statistical properties such as how
often the rules are used across words. The dual-route
framework is representative of a general approach to
the study of language and other phenomena which holds
that distinct mechanisms are involved in the abstraction
of categorical, symbolic rules versus the memorization
of arbitrary facts (e.g., Pinker, 1999).

In the connectionist (or ‘‘triangle’’) framework, both
words and nonwords are pronounced using the same
network of weighted connections among units in a par-
allel distributed processing (PDP) architecture (e.g.,
Seidenberg & McClelland, 1989). Such models do not
incorporate the distinction between a lexical level con-
taining memorized forms of words and a set of rules
for decoding novel words. This approach is representa-
tive of a broader theoretical stance which asserts the pri-
macy of statistical learning in the acquisition and use of
language and other types of knowledge (Kirkham, Slem-
mer, & Johnson, 2002; Saffran, Newport, Aslin, &
Tunick, 1997; Seidenberg, 1997). Thus, the differences
between the dual-route and connectionist approaches
to spelling-to-sound decoding instantiate contrasting
views about the characterization of lexical and other
types of knowledge.
Regularity and consistency effects in word reading

Several recent studies have attempted to adjudicate
between the competing models by considering the effects
of two structural properties of words: ‘‘regularity’’ and
‘‘consistency.’’ The concept of regularity is central to
1 As Harm and Seidenberg (2004) noted, the term ‘‘dual-route
model’’ is ambiguous. Sometimes it refers to visual and
phonologically mediated processes in the access of meaning,
and other times to lexical and nonlexical processes for
generating pronunciations (see also Coltheart, 2000). The claim
that reading may involve both visual and phonologically
mediated processes is not specific to any one theory; it reflects
the fact that in alphabetic writing systems letter strings can be
associated with both meanings and pronunciations. However,
the claim that two mechanisms are required to pronounce letter
strings is specific to the dual-route moded by Coltheart and
colleagues. We use the term ‘‘dual-route model of reading
aloud’’ in reference to models incorporating this claim.
the dual-route approach: regular words are ones whose
pronunciations are correctly specified by spelling-sound
rules. Many words are regular (e.g., MUST and PAVE),
as are all nonwords (e.g., NUST and MAVE, which
according to this theory can only be pronounced by
rule). Typically the rules involve mappings between gra-
phemes and phonemes, but other types of rules are
sometimes proposed (see Coltheart et al., 2001, who
included multigrapheme and context-sensitive rules).
The critical property of regularity is that it is a categor-
ical concept: a word�s pronunciation is either correctly
specified by the pronunciation rules or not. Words
whose pronunciations violate the rules produce regular-
ity effects: longer latencies and/or more errors than for
rule-governed words. These arise because the lexical
and nonlexical routes produce conflicting pronuncia-
tions for exception words (e.g., the lexical route yields
the correct pronunciation of PINT and the nonlexical
route, the regularization /pInt/).

Consistency, in contrast, is a statistical concept cen-
tral to the triangle approach. The degree of consistency
in the mapping between spelling and sound varies con-
tinuously. Consistency defined in terms of rimes, some-
times also called word bodies, has been examined most
thoroughly in previous research (e.g., Jared, McRae, &
Seidenberg, 1990) because this unit happens to be salient
given the structure of English monosyllables (see Seiden-
berg & McClelland, 1989; Treiman, Mullennix, Bijelac-
Babic, & Richmond-Welty, 1995 for discussion). For
example, the rime -UST is highly consistent because it
is always pronounced /Vst/ in monosyllabic words. A
rime such as -AVE is inconsistent because it is usually
pronounced as in SAVE, PAVE, and GAVE but differ-
ently in HAVE. Other factors being equal, words with
less consistent spelling-sound correspondences will be
more difficult to read aloud than words with more con-
sistent correspondences. Connectionist models have
been highly successful at accounting for the effects of dif-
fering degrees of consistency observed in many studies
(Cortese & Simpson, 2000; Jared et al., 1990; Jared,
1997).

It is important to note that although rimes exert the
greatest influence on naming latencies (and thus have
been the primary focus of interest), there are secondary
statistical phenomena involving other units, ranging
from graphemes and onset-nucleus units to entire words
(as in homographs such as WIND). Rimes happen to be
most prominent, and the effects of inconsistencies over
rimes are of a magnitude that can be readily observed
in simple behavioral studies. Effects of other units are
weaker but can be picked up in careful experiments
(e.g., Treiman, Kessler, & Bick, 2003). We emphasize
the point that inconsistency occurs over multiple ortho-
graphic grain sizes because it is often obscured in facto-
rial experimental designs. For example, in studies that
directly compare consistency and regularity effects
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(e.g., Cortese & Simpson, 2000; Jared, 2002), consistency
is typically operationalized at the rime level and regular-
ity at the grapheme level. In fact, inconsistencies exist at
multiple levels of orthographic structure, and rules are
sometimes defined in terms of units other than gra-
phemes. The important difference between the concepts
is that consistency is statistical, whereas regularity is cat-
egorical. A statistical learning model such as Seidenberg
and McClelland (1989) or Harm and Seidenberg (1999)
will pick up on spelling-sound consistencies over many
units, to the extent that they occur in the corpus of train-
ing examples, constrained by properties of network
architecture such as the input (orthographic) and output
(phonological) representations, and number of hidden
units. In dual-route models, pronunciations are either
rule-governed or not, and the procedure by which rules
are applied does not take into account statistical proper-
ties such as how often they apply across words.

In the triangle framework, regularity effects arise
from spelling-sound inconsistencies. Consider, for exam-
ple, the word ROLL, which is treated as an exception in
the DRC model (Coltheart et al., 2001) because the rule
governing the grapheme O is associated with the pro-
nunciation that occurs in DOT, TOP, ROCK, and many
other words. Hence the DRC model predicts that the
exception ROLL should be more difficult than a word
such as ROCK that obeys the rules. The triangle model
makes a similar prediction but for different reasons.
ROLL is more difficult than ROCK because ROLL
exhibits spelling-sound inconsistencies at several levels.
At the rime level it is consistent with TROLL, POLL,
and TOLL but inconsistent with DOLL and MOLL.
At the grapheme level, the O in ROLL is consistent with
words such as POST and MOLD but inconsistent with
every word in which O is pronounced differently (e.g.,
ROT, ROB, SOT, etc.). The weights governing the
orthography–phonology computation encode the statis-
tics of the mapping between spelling and sound. Hence
ROLL will be more difficult than ROCK because it
exhibits greater spelling-sound inconsistency.

Thus, both theories can in principle account for reg-
ularity effects. However, they differ with respect to words
that are rule-governed (according to DRC) but inconsis-
tent (according to the triangle model). Such words were
designated ‘‘regular but inconsistent’’ by Glushko
(1979). PAVE, for example, is rule-governed according
to DRC, but inconsistent according to the triangle mod-
el because of the irregularly pronounced neighbor
HAVE. DRC predicts that PAVE should be as easy to
pronounce as PANE, which is rule-governed but also
highly consistent because it has no close irregular neigh-
bors. In contrast, the triangle model predicts that the
two types of rule-governed words should differ: inconsis-
tent words such as PAVE should be more difficult than
consistent words such as PANE, a finding that has been
observed in numerous studies (see Jared et al., 1990, who
summarized the results of more than a dozen
experiments).

Consistency effects have been taken as strong evi-
dence against the dual-route theory. However, accord-
ing to Coltheart et al. (2001), the consistency effects
observed in previous studies were due to confounding
factors: the presence of words that DRC treats as
‘‘exceptions’’ among the inconsistent words, and left
to right misanalyses of words (‘‘whammies’’) that they
asserted occur more frequently in inconsistent words.
They applied this analysis to a single study in the lit-
erature (Jared, 1997). However, Jared�s data yield a
consistency effect even with these factors taken into
account (i.e., if the exception and whammy items
are removed from the data set). Moreover, the two
factors do not account for consistency effects in other
studies. For example both Cortese and Simpson
(2000) and Jared (2002) conducted naming studies
that explicitly compared the regularity and consistency
factors, and examined the performance of the Plaut
et al. (1996) and Coltheart et al. (2001) models on
their stimuli. Whereas human subjects and the Plaut
et al. (1996) model produced large consistency and
small (for the Cortese & Simpson stimuli) or null
(for the Jared stimuli) regularity effects, the Coltheart
et al. (2001) model did the opposite, producing very
large regularity effects and null (or reversed) consis-
tency effects.

In summary, consistency effects are critically impor-
tant because the triangle model predicts they should
occur whereas the DRC model predicts they should
not, in the absence of confounding factors. Existing
data indicate that such effects occur for words, pre-
senting a substantial problem for the dual-route
approach, including DRC 2001, which does not pro-
duce them.
Consistency and variability in nonword naming

Although consistency effects for words strongly favor
the triangle approach, it is also important to consider
whether similar effects occur for nonwords. In dual-
route models, all known words can be pronounced via
the lexical mechanism; the grapheme–phoneme corre-
spondence rules that constitute the second route are
mainly relevant to generalization (i.e., nonword pronun-
ciation). Because of the serial nature of rule application
in the 2001 DRC model and the settings of other param-
eters, the nonlexical route operates so slowly as to have
little effect on the pronunciation of words. In contrast,
connectionist models make the strong claim that gener-
alization arises from passing novel items through the
same network that encodes knowledge of words. Hence,
whether such networks can generate correct nonword
pronunciations is important. In fact there has been some
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question as to whether they can. Seidenberg and McC-
lelland (1989) initially emphasized the fact that their net-
work produced correct output for both rule-governed
words and exceptions. It was later noted that the model�s
performance on nonwords was less accurate than peo-
ple�s (Besner et al., 1990). The Seidenberg and McClel-
land model correctly generalized to simple nonwords
such as NUST, illustrating generalization without rules;
however, it made errors on more difficult nonwords such
as JINJE. Plaut et al. (1996) and Seidenberg et al. (1994)
subsequently showed that with improved phonological
representations such models could also pronounce non-
words at levels comparable to human performance and
slightly better than the 1993 version of DRC (Coltheart
et al., 1993). However, more recent work discussed
below (e.g., Treiman et al., 2003) raised further ques-
tions about both types of models� capacities to account
for nonword performance.

The present research focused on two aspects of non-
word naming. The first is nonword consistency effects.
We know that performance on a ‘‘rule-governed’’ word
such as PAVE is affected by an inconsistent neighbor
such as HAVE. The same effect has been reported for
nonwords: MAVE is also harder to pronounce than
NUST (Glushko, 1979). As with words, the DRC model
predicts that such effects should not occur; nonwords are
pronounced by the rule component with little if any
input from the lexical route. Nonword consistency
effects also seem more compatible with the PDP
approach; the effects arise from the same source as for
words, shaping of the weights by exposure to words with
conflicting spelling-sound correspondences. Thus weight
settings that produce an inconsistency effect for a word
such as PAVE also produce one for a nonword such
as MAVE. In the dual-route approach, both MAVE
and NUST are pronounced using nonlexical pronuncia-
tion rules and hence should behave alike. Consistency
effects for nonwords provide a particularly strong basis
for deciding between the theories, insofar as they chal-
lenge the claim that the generalization must be achieved
by rule, which is the primary motivation for including
rules in the DRC model.

The second issue is variability in people�s pronunci-
ations of nonwords. In previous work, the performance
of both dual-route and connectionist models was
assessed with respect to whether they produced plausi-
ble nonword pronunciations. Judged by this criterion,
both types of models do approximately equally well.
Many nonwords, however, are pronounced differently
by different subjects (Andrews & Scarratt, 1998;
Seidenberg et al., 1994). Variability in pronunciations
is a fact about performance that models of word and
nonword pronunciation need to explain. One potential
explanation is that people have somewhat different rep-
resentations of spelling-sound knowledge because their
reading experience differs (e.g., with respect to type and
amount of reading). Individual differences of this sort
are easily accommodated by an approach in which
probabilistic spelling-sound mappings are acquired via
a learning mechanism that is sensitive to statistical
properties of the words to which the reader (or model)
is exposed. Accounting for this variability provides an
additional, more stringent criterion for evaluating mod-
els. One can consider not merely whether the model
produces a plausible pronunciation (e.g., one of the
pronunciations produced by people) but whether it
produces the alternative pronunciations that people
produce.

In principle, variability in experience could lead indi-
viduals to formulate different pronunciation rules in a
DRC-type model. This proposal is difficult to evaluate
because there is no current proposal about how a set
of rules is acquired in the DRC framework, or how dif-
ferent readers could acquire different rules. An early ver-
sion of the model Coltheart et al. (1993) utilized a rule-
learning algorithm, but this was later discarded because
it lacked psychological plausibility (e.g., in the way it
searched the space of possible rules) and because the
rules it generated did not work sufficiently well (Seiden-
berg, Petersen, MacDonald, & Plaut, 1996). Norris
(1994) also used an algorithmic procedure to learn pro-
nunciation rules, but the ‘‘rules’’ consisted of weights on
connections among units representing letters, gra-
phemes, and larger units, trained using a connectionist
learning procedure (the delta rule). This notion of ‘‘rule’’
deviates considerably from Coltheart et al.�s: In the Nor-
ris model, the mappings are applied probabilistically,
and they are based on sublexical statistics over multiple
levels of representation that are built into the architec-
ture of the model. Thus they are much more similar to
the kinds of probabilistic constraints learned by PDP
models.

Within the connectionist approach, individual differ-
ences have tended to be ignored because they require
multiple runs of a model, something that until recently
was too computationally time consuming to be feasible.
The research described below is the first attempt to mod-
el behavioral data concerning variability in nonword
pronunciation. Individual differences among readers
could be due to several factors that can be simulated
within the triangle framework, including constitutional
factors related to learning efficiency or capacity; differ-
ences in the level of detail with which phonological
information is represented; and different amounts or
types of reading experience (Harm & Seidenberg,
1999). Although other factors may eventually prove to
be involved, we began by determining how well differ-
ences in experience alone could account for existing
data. Thus we examined whether individual differences
in the pronunciations of nonwords arise from minor dif-
ferences in the sample of words to which individuals are
exposed. We trained a single model multiple times, using
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the probabilistic, frequency weighted sampling proce-
dure used in earlier models. This procedure results in
each model being exposed to a different set of words.
We predicted that this seemingly minor manipulation
would give rise to different pronunciations for some
nonwords, as in people. Specifically, we expected the
sampling differences to have little impact on nonwords
containing common, high-frequency spelling-sound
correspondences, for which people agree on a single
pronunciation; however, they would be expected to
affect the pronunciations of inconsistent nonwords
such as MOUP, for which people provide different
pronunciations.

We assessed performance of two models—the DRC
(Coltheart et al., 2001) and multiple runs of a version
of the Harm and Seidenberg (1999) model—with respect
to the simulation of three studies of nonword reading:
Glushko (1979); Andrews and Scarratt (1998), and Trei-
man et al. (2003). These studies provide different types of
evidence about nonword reading, and included stimuli
that were suitable for testing the models. Three kinds
of data were examined: response latency from the Glu-
shko (1979) and Andrews and Scarratt (1998) studies;
effects of spelling-sound consistency on the pronuncia-
tions of ambiguous nonwords (Andrews & Scarratt,
1998; Treiman et al., 2003); and individual differences
in nonword pronunciation related to spelling-sound con-
sistency (Andrews & Scarratt, 1998).

To anticipate the results, the modeling provides
two serious strikes against the dual-route approach.
First, DRC does not produce the consistency effects
that were observed in behavioral studies conducted
with different materials in different labs. The effects
are real and they cannot be explained by the alterna-
tive factors invoked by Coltheart et al. (2001). Second,
DRC does not account for individual differences in the
pronunciations assigned to nonwords; the pronuncia-
tion rules generate one pronunciation for each letter
pattern. Although the connectionist modeling does
not capture all aspects of the variability observed
across individuals, it clearly establishes the feasibility
of the approach.
Methods

PDP model architecture

For these simulations we used a slightly modified ver-
sion of the Harm and Seidenberg (1999) model. The
model had 133 orthographic units, 200 phonological
units and 100 hidden units. Twenty cleanup units medi-
ated connections from each unit of the phonological
layer to itself and every other unit on the layer. The pho-
nological representation consisted of 8 slots and 25 pho-
nological features for each slot (see also Harm, 1998;
Harm & Seidenberg, 2004). Each phoneme was coded
as a binary vector, with each ‘‘on’’ bit representing the
presence of a phonological feature. This representation
differs somewhat from the Harm and Seidenberg
(1999) model. However, our experience with different
output phonological representations is that the precise
choice of coding scheme has little effect, as long as the
representation effectively encodes the similarity space
of the phonetic inventory. This is true even when, as in
Keidel, Zevin, Kluender, and Seidenberg (2003), the
model directly addresses how such representations are
learned from acoustic input.

The pronunciations on which the model was trained
were based on the dialect of American English prevalent
in Southern California. The most distinctive aspect of
this dialect vis à vis other versions of American English
is the lack of a contrast between /a/ and / c/ (as in doll

and ball, respectively). The behavioral data sets include
a range of dialects (including Australian and Midwest-
ern English) which creates minor discrepancies between
model and human data. A nonword such as YALD, for
example, is inconsistent in the Midwestern dialect spo-
ken by the subjects in the Treiman et al. (2003) study,
but not in the model�s dialect. On our view, the noise
that these items add to the assessment of the model
was outweighed by the advantage of simulating data
from a range of studies using a single architecture and
training set. Clearly, it would be possible to train models
in different accents and achieve better fits to particular
data sets.

Model training and testing

A list of 5870 monosyllabic words was used as the
training set in all simulations. During training, the prob-
ability of using any word on a given trial was propor-
tional to the square root of its frequency (taken from
Marcus, Santorini, & Marcinkiewicz, 1993), with raw
frequencies were capped at 10,000. This transformation
and capping ensured that low-frequency words would
be selected a reasonable number of times out of the
1,000,000 training trials used for each run. For example,
an item with a nominal frequency of one per million
occurs 40 times on average during the training phase
in the current simulations. This gives such items a
chance of being acquired within a reasonable amount
of training time. Similar results would obtain without
this transformation, but at the cost of multiplying the
amount of computational time per simulation run to
an impractical degree. This is a major consideration in
the present study, which involves multiple runs of the
model.

All runs of the model started with the same set of
initial weights set to small, random values. We kept
the initial weights constant in order to be able to
isolate effects of training corpus variability. On each
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training trial, the orthographic units were set to the
values for a given target for 10 time ticks. After 12
ticks, the pattern on the phonological layer was com-
pared to the desired output and an error signal was
propagated back through the network using a variant
of the continuous recurrent backpropagation algo-
rithm. The learning rate was .01.

The model was tested by setting the orthographic
values to represent a nonword for 10 ticks and observ-
ing the output on the phonological layer two ticks
after the orthographic input was removed. A winner-
take-all scoring system was used to determine the
model�s output: for each slot on the output layer, we
determined which phoneme was closest to the pattern
on the output at the final time tick and reported this
as the model�s pronunciation. Pronunciations were
then scored as ‘‘regular’’ (according to the rules
defined by Andrews & Scarratt, 1998) or ‘‘critical’’
(according to the definition in Treiman et al., 2003).
All items from the Andrews and Scarratt (1998) study
were included, although a small number included
spellings or spelling-to-sound mappings not common
in American English. In contrast, one condition (Case
2, onset and body) had to be eliminated from simula-
tions of the Treiman et al. (2003) study because it
depended on a contrast between the vowels /a/ and
/ c/ not present in the model�s dialect.

Because these simulations were designed to examine
variability in the pronunciations generated to ambigu-
ous nonwords, we did not designate a single pronun-
ciation as the correct one a priori. The model�s
output was only scored as an error if one or more
graphemes were assigned pronunciations that did not
occur in any word in the lexicon. Response latencies
for nonerror responses were simulated in the model
using a settling time measure, which is the time (in
processing cycles) required for the model to arrive at
its final response. Settling times were determined with
respect to the pronunciation generated for each item
on each run. Settling time is not an ideal proxy for
naming latency, which reflects the time to initiate a
response, rather than the time required to fully specify
a pronunciation. However, settling times do roughly
reflect relative differences in pronunciation difficulty
items and are sufficient for many purposes (e.g., simu-
lating data averaged across items of a given type). All
data presented below are means from the 10 runs of
the model, except for the H statistics (defined below)
for which fourteen additional runs were included to
make the analyses more compatible with the human
data.

Items from the experiments were also submitted to
the DRC model using the standard parameter set. The
model (downloaded from http://www.maccs.mq.
edu.au/~max/DRC/max/DRC/) was presented with
the items in ‘‘batch naming’’ mode. Response latencies
were recorded in cycles, and the model�s pronunciations
were scored as above.
Results

Overall performance of the PDP model

After one million training trials, the PDP model cor-
rectly pronounced an average of 95% of the training set
(5579/5870 words). Errors tended to be so-called strange
words, (e.g., ACHE, CHUTE, GAUCHE, VELDT).
Because these items are highly unusual both in their spell-
ingpatterns and spelling-to-soundmappings, theydepend
on semantic knowledge to be pronounced correctly (see
Harm & Seidenberg, 2004; Plaut et al., 1996; Strain, Patt-
erson, & Seidenberg, 1995 for a discussion of the role of
semantics in reading strange words). Another difficulty
is the ‘‘slot problem’’ (Plaut et al., 1996): the model�s
orthographic input consists of vowel-centered slots which
can take on a different value for each letter that occurs at
that location. This means that what the model knows
about, e.g., the letter T in VELDT does not overlap with
its representation of the same letter inmore commonposi-
tions (i.e., first or second position after the vowel). This
also creates difficulties for some nonwords. However,
the fact that themodel�s performance differs frompeople�s
as little as it does suggests that although the slot based rep-
resentation needs to be replaced with a more realistic rep-
resentation, it does not greatly interfere with learning
spelling-sound correspondences.

The error rate was 5% for the Glushko nonwords, 5%
for the Andrews and Scarratt nonwords and 10% for the
items in the Treiman et al. (2003) study. These error
rates are somewhat larger than the means reported for
the subjects in the behavioral studies. Errors tended to
be vowel blends. For example, the grapheme EA is most
frequently pronounced /i/ or /e/. Because the phonolog-
ical features of vowels are encoded continuously in the
model, it will occasionally settle on the midpoint
between /i/ and /e/, which happens to be /I/, yielding,
for example /bIlm/ for BEALM. These responses were
scored as incorrect, which may be a more stringent crite-
rion than employed in scoring the human data, given
expectancy effects in speech perception (e.g., Ganong,
1980), and the fact that the researcher scoring the
responses is expecting one of a limited number of
pronunciations.

Settling time data were right skewed in a manner sim-
ilar to RT data. Specifically, a small number of observa-
tions were observed during the last two time ticks, when
the output targets were typically provided. Data were
trimmed by excluding trials with settling times at these
last two time ticks. This resulted in discarding less than
1% of the data for both the Glushko and the Andrews
and Scarratt data.

http://www.maccs.mq.edu.au/~max/DRC/max/DRC/
http://www.maccs.mq.edu.au/~max/DRC/max/DRC/
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Fig. 1. Response latency data for Glushko�s (1979) consistent and inconsistent nonwords: (A) subjects� response latencies in
milliseconds; (B) mean settling time from PDP simulations reported in this paper; and (C) response latencies (in cycles) from the DRC.

Table 1
Categories of Nonwords in the Andrews and Scarratt (1998)
Study

Stimulus type Example Pronunciation

Regular Analogy

RCB TUNK /tVNk/ /tVNk/
RIB SULL /sVl/ /sfl/
NRAU VONTH /vanh/ /vVnh/
NRAM WALF /wælf/ /wæf/

Note. Abbreviations for item types described further in text:
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Consistency effects on response latency

Fig. 1 presents data from the Glushko (1979) study
and the current simulation. The consistency effect was
highly reliable in the human data, and also in the sim-
ulation, F (1,78) = 18.59, p < .001. The item-wise cor-
relation between settling times and naming latencies
was also significant, r = .22, t (84) = 2.09, p < .05.
The DRC model did not replicate the consistency
effect, and latencies measured in DRC cycles did not
correlate significantly with human latencies, r = .15,
t (83) = 1.40.2

Coltheart et al. (2001) claimed that consistency effects
for words arise from two confounding factors. One, the
presence of exception words among the inconsistent
stimuli, is irrelevant here because the stimuli are non-
words. The other, ‘‘whammy’’ effects due to the serial
application of rules, could apply to nonwords. Thus if
behavioral effect were due to more ‘‘whammies’’ in the
inconsistent nonwords, DRC would produce the effect.
2 One of Glushko�s items, HOVE, was removed from the
analysis because it was in DRC�s lexicon and had a response
latency more than 3 standard deviations faster than the mean
for the remaining items. Including this outlier does not improve
the correlation between human latencies and DRC data.
However, it does not, indicating that the behavioral
effect is not due to this factor.

Andrews and Scarratt (1998) presented a detailed
study of factors that affect nonword pronunciation and
data about variability across subjects, using stimuli
whose neighborhood properties varied. Four types of
stimuli were used (Table 1): Regular, consistent body
RCB, rgular, consistent body; RIB, regular, inconsistent body;
NRAU, no regular analogy, unique body; NRAM, no regular
analogy, many neighbors body. Regular pronunciations deter-
mined according to rules in Andrews and Scarratt (1998);
analogies represent an alternative pronunciation based on the
most frequent pronunciation of each body, TRUNK, FULL,
MONTH and HALF, respectively.
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(RCB) nonwords contain bodies that are assigned a sin-
gle, regular pronunciation in all words in which they
occur; regular, inconsistent body (RIB) nonwords con-
tain bodies that assigned an irregular pronunciation in
many words, and the rule-governed pronunciation in
many others; no regular analogy, many neighbors
(NRAM) nonwords contain bodies that occur in multi-
ple irregular words; no regular analogy, unique (NRAU)
nonwords are those whose bodies occur in only one,
irregular word.

Although they were designed to test a distinction
between rule and analogy mechanisms, the effect of
Andrews and Scarratt�s subtyping procedure was to cre-
ate conditions in which consistency varied in a graded
manner. The RCB items are the most consistent, because
there the statistics at the rime level and the grapheme
levels are consistent with each other. For example, the
most frequent pronunciation in the lexicon for U is /V/
and this is the only pronunciation it is assigned in the
context of the body -UNK. The RIB items represent a
slightly lower degree of consistency, because there is sup-
port in the lexicon for both a regular pronunciation
(e.g., HULL and GULL for -ULL) and an irregular
pronunciation (e.g., FULL and PULL). In the case of
the NRAM and NRAU items, statistics at the body level
overwhelmingly favor a different pronunciation from the
Fig. 2. Response latency data for Andrews and Scarratt�s (1998) items
from PDP simulations reported in this paper; and (C) response laten
statistics at the grapheme level: By definition, there are
no instances in which the most frequent pronunciation
for a critical grapheme is assigned in the context of the
body in question. Here we assess the models with respect
to naming latencies in this study; later we consider data
about the types of pronunciations produced.

The latency data shown in Fig. 2 reflect an orderly,
graded influence of consistency on response latency.
The most consistent items (RCB) were read most quick-
ly. Items that were regular but inconsistent at the word-
body level (RIB) were read more slowly. Items with no
regular analogy (NRAU and NRAM) are interesting
because they exhibit conflicts between statistics at the
grapheme and word-body levels. For these items, the
number of neighbors had a large effect: items with many
neighbors were named significantly more quickly than
items with only one. Average settling times for the
PDP models exhibited this same difference between the
NRAU and NRAM items, F (1,126) = 14.34, p < .001.
In the human data, the advantage for RCB over RIB
items was marginally significant; the model data also
produce this trend, F (1,78) = 2.01. Finally, the differ-
ence between NRAM and NRAU items was also signif-
icant, F (1,46) = 5.62, p < .05. The item-wise correlation
between the model and human data was significant,
r = .28, t (126) = 3.22, p < .005.
: (A) subjects� response latencies in milliseconds; (B) settling time
cy data from the DRC in cycles.
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The DRC model captures the overall advantage of
items with predominately regular neighbors over items
with no regular neighbors, F (1,126) = 11.85, p < .001,
as well as the difference between NRAM and NRAU
items, F (1,46) = 7.30, p < .01. Item-wise correlation
between the DRC and human data was significant,
r = .36, t (122) = 4.27 p < .001.3 The only major discrep-
ancy between the DRC model and the human data is in
regard to the difference between the RCB and RIB con-
ditions, which is marginally significant in the human
data but nonsignificant and numerically reversed in the
DRC model.

To summarize, both models provide a good account
of the latency data from Andrews and Scarratt (1998)
study. In both the human and PDP data, there is a trend
toward a consistency effect for nonwords with ‘‘regular’’
word bodies, which DRC does not produce. Taken with
the results for the Glushko (1979) study, these findings
suggest that the PDP model is more sensitive to consis-
tency effects on nonword latencies.

Consistency effects on pronunciation ‘‘regularity’’

We now consider the effects of consistency on how
nonwords are pronounced. An item such as SULL,
which has both regular (HULL and DULL) and irregu-
lar (PULL and FULL) neighbors, can be pronounced to
rhyme with either of these alternatives. Two studies have
examined the degree to which skilled readers are sensi-
tive to lexical statistics at this level when assigning pro-
nunciations to nonwords.

Andrews and Scarratt (1998)

Fig. 3A shows the percentage of regular pronuncia-
tions produced by subjects in the Andrews and Scarratt
(1998) study. Regularity was defined in terms of
Andrews and Scarratt�s rules. As in the latency data,
the effects are graded. The RCB and RIB conditions
produced the highest percentages of regular pronuncia-
tions, with NRAU producing a much lower percentage
and the NRAM condition the fewest. Statistically, the
difference between the RCB and RIB conditions was
marginal, whereas the RIB-NRAU and NRAU-NRAM
differences were significant. The PDP model (Fig. 3B)
produced the same ordering of conditions, and the same
pattern of significant differences between conditions
(t (64) = 7.95, p < .01 for RIB-NRAU and
t (23) = 7.74, p < .01 NRAU-NRAM) except that the
RCB-RIB difference was larger than for humans,
t (78) = 7.82, p < .01.
3 Three items, LANG, RATCH and TOPE were present in
the DRC�s vocabulary and were removed from the analyses
because their RTs were nearly 4 standard deviations faster than
the remaining items.
The results from the DRC model are different. First,
the model is at ceiling (100% regular pronunciations) in
the RCB and RIB conditions, which was not observed in
human subjects or the PDP model. Second, DRC does
not reproduce the significant difference between the
NRAU and NRAM conditions that is present in both
human data and PDP model. Numerically, the difference
is in the wrong direction, although it is not statistically
reliable. DRC produces a significant main effect of reg-
ular body vs. no regular analogy body items (RCB-
RIB vs. NRAU–NRAM) rather than the graded effects
in the human and PDP data. These results implicate the
same problem as the latency simulations: DRC�s rule set
does not capture people�s sensitivity to degrees of spell-
ing-sound consistency.

In Table 2, stimuli are grouped by the proportion of
regular responses assigned by subjects in Andrews and
Scarratt (1998). The data from the PDP simulation show
a pattern similar to the human data, although the model
overestimates the proportion of regular pronunciations
throughout, particularly in the 20–40 bin. The DRC
only produces a large proportion of irregular responses
in one bin. It is important to note here that the ‘‘irregu-
lar’’ pronunciations produced by the DRC are the result
of a discrepancy between how the rules are encoded, and
not the result of the involvement of analogical or lexical
processing. The rule set adopted by Andrews and Scarr-
att (1998) represents a minimalist approach, wherein
only very small units (graphemes) are coded. On their
scheme (and others in a similar vein, see e.g., Venezky,
1970), each grapheme has a rule associated with it,
and pronunciations are considered regular if all of the
rules apply. By not including context-sensitive rules
and multigrapheme rules, this scheme avoids a number
of issues that arise for more complex rule sets. For
example, if both single- and multigrapheme rules are
allowed, a mechanism to adjudicate between them is
required. However, restricting the rule set to rules
encoding single graphemes necessarily ignores meaning-
ful regularities at larger grain sizes. This is clear from the
small number of regular pronunciations produced by
human subjects in the NRAU and NRAM conditions.

The rule set adopted in the DRC approach does not
have the same restrictions as the Andrews and Scarratt
(1998) rules. It contains both context-sensitive and mul-
tigrapheme rules and explicitly defines a mechanism by
which rules operating at larger unit sizes (e.g., the word
body) can override rules at smaller unit sizes. As shown
in Fig. 3 and Table 2, these rule sets make slightly differ-
ent claims about what should count as a regular pronun-
ciation. In particular, the word-body level rules in the
DRC cause it to produce irregular pronunciations for
16 of the 24 items that most often elicited irregular pro-
nunciations from human subjects—for all other items,
the DRC agrees strongly with the Andrews and Scarratt
(1998) rules.



Fig. 3. Percentage of regular pronunciations for Andrews and Scarratt�s (1998) items: (A) human data; (B) data from PDP simulations
reported in this paper; and (C) data from the DRC.

Table 2
Percentage of regular pronunciations generated by humans and
the two models

BIN 0–20 20–40 40–60 60–80 80–100
N 24 15 8 8 73

Percent regular

AS98 6.74 31.89 46.28 69.93 96.53
PDP 24.13 55.38 50.31 86.25 90.38
DRC 33.33 100.00 100.00 87.50 95.89

Note. Bins represent ranges of percent regular pronunciations
and are organized according to human data from the original
Andrews and Scarratt (1998) study; N, number of items in each
bin; AS98, Andrews and Scarratt�s (1998) subjects; PDP, cur-
rent parallel distributed processing model; DRC, Dual Route
Cascade model; percent regular, mean percentage of regular
pronunciations for nonwords in each bin.
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Treiman et al. (2003)

Treiman et al. (2003) examined the pronunciation of
specific vowel graphemes in specific onset or coda con-
texts. Their itemswere developed on the basis of statistical
analyses of a large corpus of Englishmonosyllables (Kess-
ler & Treiman, 2001). Examples of the items are shown in
Table 3. They obtained naming data for these items in
order to examine the effects of different contexts on the
pronunciations of vowels. For each vowel, a ‘‘critical pro-
nunciation’’ was chosen. Critical pronunciations were
defined as involving relatively infrequent grapheme-to-
phoneme correspondences that are highly conditioned
by context. One dependent measure in their study was
the difference in the proportion of critical pronunciations
for experimental items (which contain onsets or codas
that occur in words with the critical pronunciation) and
control items (which contain ‘‘neutral’’ onsets or codas).
For example, the probability of pronouncing the A in
nonwords with the body -ANGE as /eI/ was compared
to the probability of producing the same vowel in items
with the body -ANCE. Treiman et al. (2003) found that
connectionist models (Plaut et al., 1996; Harm & Seiden-
berg, 2004) captured the broad pattern of the data in
showing a strong influence of the critical context on vowel
pronunciation; however the fit at the smaller grain size of
predicting particular pronunciations for particular items
was ‘‘not impressive’’ (p. 67).

Data from 10 runs of the current model are given in
Table 3 along with the human data and data from two
other models that Treiman et al. (2003) used for compar-
ison. Multiple runs of the present model provide a closer
approximation of the human data than the results



Table 3
Difference in proportion of critical vowel pronunciations in experimental and control nonwords from the Treiman et al. (2003) study

Context CV1 VC1 VC3 VC4 VC5 VC6

Critical pronunciation /a/ /eI/ /e/ /aI/ /of/ /f/
Example Squant Crange Chead Crind Prold Blook

Human data 0.58 0.55 0.12 0.33 0.83 0.70
Current model 0.39 0.59 0.32 0.83 0.77 0.68
Harm and Seidenberg (2004) 0.56 0.90 0.40 1.00 1.00 0.80
DRC 0.00 0.00 0.00 0.00 0.00 0.00

Note. C, consonant; V, vowel; and DRC, Dual Route Cascade model.
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reported by Treiman et al. (2003) in their Experiment 1,
which were based on single runs of earlier models. For
example, the single run of the Harm and Seidenberg
(2004) model tested by Treiman et al. (2003) generated
100% critical responses for the Case 4 and Case 5 items.
Among runs of the model tested in the current work, dif-
ferent runs produced different pronunciations for some
of these items, leading to lower (and thus more
human-like) proportions of critical pronunciations.
The only cell in which a large deviation from the human
data was observed is the VC4 condition. Interestingly,
the word body in this condition was -IND, and the only
word in the lexicon for which this body is assigned the
regular pronunciation is for one sense of the homograph
WIND. Homographs were not included in the training
set (their pronunciations are normally disambiguated
by context, which the current model lacks). Thus the lex-
ical item that would contribute most to producing the
‘‘critical pronunciation’’ was not included, and so the
model ‘‘regularized’’ more than people. Otherwise the
simulation and behavioral data are very similar.
Simulation R
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Fig. 4. Percentage of regular pronunciations for Andrews and Scarra
this paper. RCB (white), regular, consistent body; RIB (black), regul
many neighbors; NRAU (dark gray), no regular analogy, unique bod
Individual differences

Unlike classical box-and-arrow models which are
most often treated as deterministically generating pre-
dictions (Coltheart, 1999), PDP models implement a
set of principles regarding the acquisition and use of lin-
guistic knowledge that are fundamentally probabilistic
(Seidenberg, 1997). In a quasiregular system such as
English spelling-to-sound, this means that different runs
of the same model can arrive at slightly different enco-
dings of the same mapping, making it quite natural to
explain individual variability in the human data.

For example, data from the Andrews and Scarratt
(1998) items for 10 runs of the model are depicted in
Fig. 4. While in all instances the ordinal pattern was
the same, the relative proportion of regular pronuncia-
tions differed considerably across runs of the model, par-
ticularly for the items with ‘‘no regular analogy’’
(NRAU/NRAM). This pattern could be interpreted in
terms of differences in ‘‘reading style’’ among runs of
the model. A number of studies have attempted to iden-
un

6 7 8 9 10

RCB
RIB
NRAM
NRAU

tt�s (1998) items from all 10 runs of the PDP model reported in
ar, inconsistent body; NRAM (light gray), no regular analogy,
y.
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tify subgroups of skilled (Baron & Strawson, 1976;
Brown, Lupker, & Colombo, 1994) and developing
(Goswami & East, 2000) readers who vary in the degree
to which they appear to apply grapheme-to-phoneme
rules or lexical analogies in their reading of nonwords.
The current results suggest that at least some of this var-
iability may be the result of fairly subtle differences in
experience, and may be explicable in terms of the encod-
ing of spelling-to-sound statistics rather than different
reading strategies.

In addition to quantifying the proportion of regular
responses given for each type of item, Andrews and
Scarratt (1998) also quantified variability among sub-
jects in the pronunciation assigned to particular non-
words. Variability was quantified using the
information theoretic H statistic, a measure of entropy
which, in this instance, quantifies the heterogeneity of
responses to a given nonword. It is computed using
the formula
X

½�pi � log2ðpiÞ�; ð1Þ

where pi is the probability of a given pronunciation. A
value near 0 represents a nonword for which a single
pronunciation is highly dominant, whereas higher values
represent a nonword for which many pronunciations are
equiprobable. Because nonwords generally have only
two or three possible pronunciations, the maximal value
for H is rarely approached. Furthermore, because values
for H are related to the number of observations in-
volved, we ran an additional 14 models in order to
match the number of subjects (24) in the Andrews and
Scarratt study. As shown in Fig. 5, the greatest consen-
sus (thus, lowest H values) was observed in the RCB
condition with incrementally less in the RIB condition.
In the human data, there was a large increase in H val-
ues between the RIB and NRAM that is much larger
than that observed in the model.
Fig. 5. H values reflecting variability in responses for the Andrews an
(B). No data are presented for the DRC because it does not produce
Similar to the human data, variability was greater for
the NRA items than the items with regular analogies in
the model F(1,126) = 19.82, p < .001. Also like the
human data, the difference between RIB items and
RCB items was not significant, F(1,78) = 1.34. Unlike
the human data, however, the difference between NRAU
items and NRAM items was significant, F(1,46) = 6.73,
p < .05. Overall, the pattern of results from the human
subjects and multiple runs of the model are fairly simi-
lar, although the model somewhat underestimates the
variability in the human data for all categories, and par-
ticularly for the NRAM condition.

The lower level of overall variability in the model
may be the result of the small range in which frequency
was actually manipulated, or the fact that all runs of
the model started with the same set of weights. A more
serious problem for the model is the large difference in
variability between the NRAU and NRAM items, also
clearly depicted in Fig. 4. The proportion of regular
pronunciations for the NRAM items is tightly clustered
around the (very low) mean. This suggests that when
there is abundant evidence for a particular body-level
mapping between spelling and sound, this tends to
override grapheme-level mappings more regularly in
the models than in human subjects. There is little evi-
dence that the models generally prefer body-level statis-
tics to grapheme-level statistics: The model is as likely
to overestimate the proportion of grapheme-level pro-
nunciations as to underestimate it in a given data set
(Table 3, cases CV1 and VC1; Fig. 3, NRAU items).
However, the NRAM items present a special case in
which the body-level statistics are rich enough to sup-
port good generalization (because the bodies all occur
in multiple words) and consistent enough to be imper-
vious to small differences in the frequencies of particu-
lar words (because they are all 100% consistent at the
body-level).
d Scarratt (1998) stimuli for humans (A) and the current model
variable pronunciations.
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Discussion

The behavioral studies and modeling discussed here
provide evidence bearing on theories of how the syste-
maticity in spelling-sound correspondences is encoded
by skilled readers. Three aspects of the results are more
consistent with the view that this knowledge consists of
probabilistic constraints rather than categorical rules.
People and PDP models both show a graded sensitivity
to consistency in chronometric measures of nonword
reading. Consistency also influences the pronunciations
generated by both people and models, suggesting that
statistical properties of the lexicon can be used produc-
tively. Finally, individual variability among readers
and runs of a PDP model in the pronunciation of partic-
ular nonwords reflects consistency as well: highly consis-
tent nonwords generate a high degree of agreement
among readers, whereas less consistent items generate
a greater variety of responses. These phenomena are less
successfully simulated by an implemented model (DRC)
that relies on categorical rules to translate from spelling
to sound, suggesting a role for lexical statistics in the
translation of spelling to sound.

Consistency effects on response latency

That consistency influences both word and nonword
reading latency is clear from experiments over a many-
year period. Studies of word reading that independently
manipulated consistency (defined at the word-body
level) and regularity (mainly at the grapheme to pho-
neme level) have yielded large effects of consistency
and small or nonexistent effects of regularity (Cortese
& Simpson, 2000; Jared, 2002). Nonwords yield similar
effects. These results follow naturally from a view in
which spelling-sound correspondences are statistical
rather than categorical. It is thus not surprising that
computational models that incorporate statistical learn-
ing can capture these kinds of effects.

The fact that DRC does not account for performance
on the Glushko (1979) nonwords is particularly impor-
tant because Coltheart et al. (2001) cite this result as a
motivation for adopting cascaded as opposed to thres-
holded processing: in a cascaded model, there is an
opportunity for partially completed output from the lex-
ical route to influence nonword pronunciation, provid-
ing a potential basis for the advantage of consistent
nonwords over inconsistent ones in naming latency.
Although used to motivate this property of the DRC
model, it does not produce the Glushko effect. In princi-
ple, the effect could arise in the DRC model from the
activation of exception words in the lexical network,
producing a conflict between the two routes. For a non-
word to activate words to a sufficiently high level, the
parameters governing inhibition must be set to low val-
ues. Doing so creates a problem, however: the model
generates lexicalization errors, particularly for simple
wordlike nonwords such as STARN. Thus it is difficult
to tune the model�s parameter set so that it correctly sim-
ulates this aspect of nonword naming.

What is the correct pronunciation of CHEAD or MOUP?

Early discussions of nonword reading in computation-
al models focused on pronunciation accuracy: a model�s
output was scored as correct if it generated a plausible
pronunciation (e.g., one that rhymed with a similarly
spelled word). Besner et al. (1990) noted that the Seiden-
berg and McClelland (1989) model frequently produced
pronunciations that differed from people�s, suggesting
that pronunciation rules might be required. Plaut et al.
(1996) traced this behavior to limitations in the way pho-
nological information was represented in such models,
rather than the need for rules, and reported human-level
accuracy, as did Harm and Seidenberg (1999, 2004).

Later discussion focused on nonword pronunciation
at a finer level of detail. Seidenberg et al. (1996) obtained
behavioral data concerning the pronunciations of sever-
al hundred nonwords. They found that many nonwords
are pronounced in more than one way. The two most
common pronunciations accounted for more than 90%
of subjects� responses. Rather than assessing how often
a computational model produced a single, intuitively
plausible nonword pronunciation, Seidenberg et al.,
examined whether the computed pronunciations
matched either of the most common ones produced by
subjects. In that large-scale study, a connectionist model
with an improved phonological representation provided
a slightly better fit to the data than the Coltheart et al.
(1993) version of the dual-route model. This was impor-
tant both because of claims that rules were necessary for
nonword reading and because the rules in the Coltheart
et al., model were specifically created to account for
nonword pronunciation.

The current simulations extend these findings to two
additional data sets. These studies show that pronuncia-
tion of novel forms is influenced by statistical properties
of the spelling-sound mapping that arise from similarity
relations among words. A central claim of the DRC
framework is that nonwords are pronounced by apply-
ing rules. The rules state how spellings deterministically
map to pronunciations. The defining characteristic of
the rules (and the mechanism by which they are applied)
is that they are not influenced by statistical properties
such as how often particular mappings occur across
words. Thus, evidence that such statistical properties
affect word and nonword performance counts against
the dual-route framework. Statistics at the level of indi-
vidual graphemes and larger units such as the word
body, and even ad hoc units such as the oncleus

(onset + nucleus) all play a role in determining the pro-
nunciations of novel items.
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Modeling individual variability

Extending modeling to account for variability across
individuals with respect to nonword pronunciations is a
natural direction for research in this area to follow. For
the DRC model there are two challenges. One is to
develop an account of how grapheme-phoneme conver-
sion rules are learned. At present the model lacks this
learning component. The second challenge would then
be to account for how different sets of GPCs could be
learned, as demanded by the behavioral data.

Previous assessments of connectionist models� perfor-
mance also ignored individual variability in nonword
naming performance: they were conducted by compar-
ing mean latencies or modal pronunciations from exper-
iments in which many subjects were run to the data from
a single run of a model. This introduces a mismatch
insofar as the model data is actually more comparable
to the results for an individual subject rather than group
results (see Seidenberg & Plaut, 1998, for discussion).
The present research is a step toward more serious eval-
uations of individual differences in both human and
model performance. The data from multiple runs pro-
vides a better fit to the human data, especially when
the dependent measure is a qualitative one such as the
proportion of ‘‘regular’’ or ‘‘critical’’ responses generat-
ed. The model also captures some of the more specific
data concerning the variability of responses to different
types of nonwords observed in the Andrews and Scarratt
study. This suggests a number of possible future direc-
tions for research.

In the current study, we introduced variability by
using slightly different randomizations of the same word
frequency list for each run of the model. This hardly
captures the much greater variability in the kind and
amount of reading people do—even within the relatively
homogenous population of university students who par-
ticipate in psychology experiments. In addition, current
computational models (both connectionist and DRC)
are limited to monosyllabic words, which may introduce
error in their performance. Some of the statistics that are
relevant to the pronunciation of monosyllabic words
and nonwords arise from exposure to a much larger
vocabulary that includes multisyllabic words. This cre-
ates obvious discrepancies between the model�s experi-
ence and the human reader. Furthermore, variability
in the training regime is not the only possible source
of variability in connectionist models. There are also
effects due to differences in the random assignment of
initial weights whose effects need to be explored further.

Finally, the method of examining multiple runs of the
same model can be used to explore whether the patterns
of impairment seen in cases of acquired dyslexia are
related to premorbid individual differences in reading.
Such patients sometimes exhibit extreme patterns of dis-
sociation (e.g., in reading words vs. nonwords); such
patterns are often taken as a basis for identifying isola-
ble processing systems (e.g., routes). However, little
information is available about the patients� premorbid
reading abilities, how often they read and what types
of materials. A given type of brain injury may have dif-
ferent behavioral effects as a function of premorbid indi-
vidual differences. This possibility is the complement of
the situation studied by Plaut (1996), who demonstrated
that random damage to a single model can produce
highly variable patterns of impairment. Thus, behavioral
impariments that are observed in acquired dylsexia
depend on individual differences with respect to both
premorbid capacities and effects of neuropathology.
These factors are likely to produce a wide range of
behavioral profiles.
Conclusions

It is a positive reflection of the degree of sophistica-
tion of contemporary models of word and nonword
reading that strong tests of their basic assumptions can
be derived. Several researchers have been able to identify
stimuli that contrast the effects of regularity vs. consis-
tency in word and nonword reading (e.g., Andrews &
Scarratt, 1998; Cortese & Simpson, 2000; Jared, 1997
and Treiman et al., 2003). Simulations of these behavior-
al studies provide further data bearing on the adequacy
of these competing theories. The speed with which non-
words are pronounced, the pronunciations assigned to
them, and the degree of agreement among individuals
regarding their pronunciation all depend on the statisti-
cal properties of their lexical neighborhoods. Such phe-
nomena are more easily captured by connectionist
models which acquire this knowledge via statistical
learning mechanisms. Both behavioral and modeling
results support the view that generalization results from
using a network that encodes this statistical knowledge,
rather than application of rules.
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