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What is in the Duolingo dataset?
Example raw user-word observations*

Why are some L2 words harder to learn?
Classroom/experimental studies identified several predictors!.?3,

but Interface UserID Word  Word User Times Proportion
U _ _ Language Experience Experience correct correct
- predictors often dichotomized Spanish  u:OFa Blue 24 g7 16 0.66
- predictors usually studies in isolation Spanish ~ u:OFa  Spider 7 97 7 1
- few predictors studied Spanish  u:OFa Eat 20 81 18 0.9
- - > T I t_ Spanish u:OFa  Until 30 81 24 0.8
ran 10N .
What is Duollngo. W ans a O o Overall dataset characteristics
A|90l‘lthm Interface  Language Number Number Range of Range of Number
— Language Learned of Users of Word User of obser-
| GO gle Words Experience Experience  vations
Translate Spanish English 28,107 1,411 3—22,336 41 — 392,683 1,197,890
: English ish 27,248 1,737 - 4,737 41-75,664 1,182,191
1. machine nglis Span.ls 248 1,73 3—4,73 , ,182,
>> lam a girl. Un hombre, un nifio. translations Portuguese English /713 1,398 3-7991 41-40,052 312,088
English Portuguese 2,395 1,517 3-1,540 41-13,9/1 99,633
S - I | Italian English 2,959 1,411 3-1,1577 41-32,304 152,523
Yo soy una nina.
English Italian 5,522 1,330 3-1,104 41-17802 222,925
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2. bilinguals
hand-check

Predicting word learning accuracy
Linear mixed effects regression model results:

Do translations mean the same?

Duolingo User Experience - Fe
1. find the 40 closest neighbors® to a translation pair . of wordnet synsets (L1) 0
- - - : : : _ ) o—|
2. find overlapping neighbors between the two languages _>emantic Density Ditt. (L1-L2)T T
Normed Levenshtein Distance e L
rank | Brother Similarity Hermano Similarity| Boat Similarity Barco Similarity Frequency Diff. (L1-L2) - P |
1 uncle 0.82 hermana 0.79 ship 056 avion o050 [J| Concreteness - }b—e—
2 father 0.81 pa,dre 0.78 |airplane 0.46 viaje 0.49 g Meaning Similarity o]
3 son 0.79 tio 0.78 navy 0.43 puerto 0.42 || ||| ~7 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T e s
4 |grandfather 0.75 hijo 0.77 SWim 0.43 tren 0.42 Frequency (L1) - *
5 | daughter 0.66 abuelo 0.76 car 043 armada 0.42 Semantic Density - *
6 friend 0.63 hija 0.71 fish 0.42 capitan 0.42 DIff. in Nr. of svnsets (L1-L2) - .
7 sister 0.62  esposa 0.63 beach 0.42  coche 0.40 " o Y ( | )
8 | mother 0.62 quien 0.62 river 0.40 isla 0.39 Duolingo Word Experience .
9 wife 0.62 amigo 0.61 ton 0.38 vehiculo 0.39 -0.05 0.00 0.05 0.10
10 aunt 0.61 marido 0.61 wooden 0.38 hotel 0.38 Standardized Coefficient (beta)
Proportion Correct
40 family 0.36 abogado  0.36 port 0.36 cuando 0.32 P

&

higher meaning similarityt) easier to learn| | more cognateness cy easier to learn
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Q. oo © 1 @) :
wn 0.5 ! + | | - :
9 e e Zose L . | MOur_newS\{arl_aI]bIe_ A continuous measure of
_ ! (O ® I - - g
204500 = S R Meaning Similarity | ', . | cognateness is predictive
Z 04 05 06 07 08 » 030 035 040 0.45 is predictive of word \V/ of word learning accuracy!
o Similarity to English target (Brother) Similarity to English target (Boat) lea ming accu racy!
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