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Abstract 

Generalization is the ability to apply regularities to novel instances, for example, 

correctly guessing that the plural for the novel English word ‘wug’ should be ‘wugs’. Early 

language learners make overgeneralization errors like ‘mouses’, applying regularities beyond 

their attested uses. Theories concerned with the question of how learners learn to correctly 

generalize regularities, without overgeneralizing, have recently been criticized for being 

insufficiently mechanistic. Rule learning and statistical learning theories typically do not take 

into account whether that generalization is happening during production (e.g. coming up with the 

plural for ‘wug’), or comprehension (e.g. judging whether ‘wugs’ or ‘wugga’ sounds better as a 

plural for ‘wug’). However, my own prior research showed that training modality affects 

regularity learning, with production training leading to a more accurate ability to apply 

regularities to learned words. Thus, modality may provide a potential path to making theories 

more specific and mechanistic. 

In this thesis, I first reviewed relevant literature on generalization through a task modality 

lens. There is very little literature directly contrasting, in a balanced manner, the effects of 

production versus comprehension training on learning and generalization. However, 

generalization studies have used both production and comprehension testing to assess 

generalization performance. Drawing on these results, I identified several different patterns of 

generalization results by testing modality. I concluded that, if there are any modality differences, 

production training should lead to better generalization, and production tests should be more 

likely to elicit overgeneralization errors.  

I then designed and conducted an artificial language learning experiment that contrasts 

production versus comprehension training modality between different groups of participants, and 

uses both comprehension and production testing to assess learning and (over)generalization. 

People learning the artificial language with production training were better at generalizing and 

made fewer overgeneralization errors than people learning the artificial language with 

comprehension training. Surprisingly, comprehension-trained people did do better than 

production-trained people on vocabulary learning. Finally, people made overgeneralization errors 

in both comprehension and production tests. I discussed consequences for existing theories as 

well as practical applications of my findings for second language learners. 
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Literature Review on How Production Impacts Generalization 

Learning the grammar of a language is hard – recent evidence shows that even native 

speakers still improve on grammar tasks well into their twenties and thirties (Hartshorne, 

Tenenbaum & Pinker, 2018). Learning the grammar of a second language is even harder – for 

example, even native English speakers who work as translators and teachers of Spanish don’t use 

grammatical gender as fluently as native speakers (Grüter, Lew-Williams & Fernald, 2012). So, 

how can we make grammar learning more effective?  

We recently showed initial evidence that language production training improved grammar 

learning compared with language comprehension training, and posited that this benefit of 

production training was due to inherent processing differences between language production and 

language comprehension tasks (Hopman & MacDonald, 2018). However, the gold standard for 

grammar learning, as for any type of regularity learning, is generalization: the ability to apply the 

regularity to novel instances. In this dissertation, I want to test whether production training also 

improves generalization to novel instances.  

First, I review the literature on generalization in language learning from the point of view 

that production has meaningfully different task demands than comprehension, and that these 

differences are relevant for theorizing about generalization. In order to do so, I draw on three 

fairly distinct areas of published literature (Figure 1). Note that while ‘training’ and ‘testing’ are 

explicitly separated in Figure 1, I do not believe that they are inherently different to a learner. 

Pragmatically, the literatures covered in the two boxes cover different research questions. In the 

production versus comprehension training literature, focus is on the effects of the two different 

tasks, so the two tasks are contrasted explicitly in experiments. Very different research questions 

are central in the extensive literatures on phenomena like the English past tense and language 
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change – I will mainly sample papers that happen to have tested their questions in both 

production and comprehension tests.   

Figure 1 

Structure of the Literature Review  

 

Defining Generalization  

Before reviewing the literature, it is important to establish what I mean, and what I don’t 

mean, with the word ‘generalization’. I define generalization here as the ability to apply a 

regularity to novel instances. I believe this sense of generalization is related to the transfer-sense 

of generalization as it is often used in e.g. the memory literature. For example, Pan and Rickard 

explicitly define transfer as “the productive use of prior learning in a novel context […] any 

situation that is different in some way from that in which original learning took place [….] a 

different topic, a different goal, a different test type, or any number of contextual changes” 

(2018, pp. 710-711). One might argue that transfer of one situation or task to another isn’t the 

same as generalization of a grammatical rule to a novel lexical item. I think they are related – in 
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both situations, there’s a learned regularity, and it is applied in a novel setting. Woollams et al.  

use the word ‘generalization’ for both senses: they use the applying-a-regularity sense 

“generalised grammar” (2009, p. 56) as well as the transfer sense “our study indicates that 

conclusions concerning the mechanisms involved in inflectional morphology drawn from 

performance in standard form-based elicitation tasks do not necessarily generalise to the process 

underlying past-tense generation from meaning” (p. 73). I will differentiate the two senses in this 

dissertation proposal by using ‘generalize’ only for the applying-a-regularity sense, but I do 

believe this is related to ‘transfer’ (generalization) to different situations, tasks and mechanisms. 

Within the applying-a-regularity sense of generalization, it depends on the level of 

language processing that is of interest what a ‘novel instance’ is. For example, at the 

phonological level a child may say ‘nana’ instead of ‘banana’, thus overapplying the regularity 

that most words she knows start on a stressed syllable. At the lexical-semantic level, a child 

might say ‘dog’ while pointing to a sheep, thus overapplying a category to include more of the 

semantic space than it does. At the morphological level, a learner may come up with forms like 

‘runned’, and at the syntactic level, with forms like ‘explain me this’, again overextending 

known regularities. In order to emphasize that I think about generalization (and generalization 

errors) at these different levels as stemming from the same underlying process, I will use the 

word generalization interchangeably for all of these levels (in line with e.g. Ambridge et al., 

2013; MacDonald, 2013a).  

The flip side of generalization is overgeneralization, and again authors differ in how they 

use or don’t use this word. The classic example of an overgeneralization is when learners 

produce forms like ‘runned’, where they extend a regularity beyond its attested use. However, 

due to the relative sparsity of spontaneous errors like these, overgeneralizations are often studied 
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with grammaticality judgment tasks. Some authors use ‘overgeneralization’ only for production 

tasks, and carefully describe participants’ endorsements of overgeneralizations in comprehension 

tasks like grammaticality judgments as “the rated acceptability of overgeneralization errors” 

(Ambridge, et al., 2012, p. 263). Other authors do use ‘overgeneralization errors’ to describe 

participants’ behavior in both comprehension and production tasks – for example, in judgment 

studies “children are relatively more willing to overgeneralize infrequent than frequent verbs” 

(Goldberg, 2016, p. 372) and “the results from production and comprehension are complicated 

by a bias […], so that over-generalization is more apparent with ….” (Wonnacott et al., 2008, p. 

188). Yet other articles talking about similar phenomena avoid using either the word 

generalization and overgeneralization, and simply refer to ‘attested uses’ (e.g. Robenalt & 

Goldberg, 2015).  

In this thesis proposal, in line with several authors I cite (e.g. Goldberg, 2016; Wonnacott 

et al., 2008), I will use ‘overgeneralization’ to describe any extension of a regularity beyond its 

attested use, independent of the task modality. Thus, in addition to a participant producing a form 

like ‘runned’, I will refer to judging a form like ‘runned’ to be grammatically correct as an 

overgeneralization error, and to incorrectly attributing a member of a less common neighborhood 

(e.g. neuter words in Dutch, taking the ‘het’ determiner) as belonging to a more common 

neighborhood (e.g. masculine words in Dutch, taking the ‘de’ determiner) as an 

overgeneralization error. I choose to use the word overgeneralization in this task-general way 

because, while I do believe task differences matter for when learners are likely to make errors 

like these, in terms of learning a regularity I consider them as errors of an equivalent type. 

I view generalization, applying regularities to new instances, and overgeneralization, 

where this application extends beyond attested uses, as flip sides of the same coin. To a learner, 
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both a succesful generalization and an infelicitous overgeneralization simply are attempts of 

applying a regularity to a novel instance. The distinction might be immediately clear to a fluent 

user, and might be clear to the learner afterwards, upon receiving feedback, but I don’t believe 

they are different in the moment of making the attempt. This is in line with other authors who 

describe unattested uses as both generalization and overgeneralizations (e.g. Wonnacott et al., 

2008, p. 183). I will refer back to this later, when identifying patterns of (over)generalization as 

dependent on modality in Section Testing Production Versus Comprehension in Language 

Learning. 

Finally, I’ll review some literature in which the word ‘regularize’ is used. In these studies, 

learners over-apply a regularity (compared to its use in the input), but instead of scoring this as 

overgeneralization errors, the researchers score it positively as a sign that the learner is making 

the language more systematic (e.g. Hudson Kam & Newport, 2005; 2009; Hendricks, Miller & 

Jackson, 2018). Thus, overgeneralization and regularizations are both cases in which users apply 

a regularity beyond its attested uses, and typically the only difference is in how the experimenter 

values these uses. Confusingly though, since the term ‘regularize’ became common in the 

literature, ‘overregularization’ is now used as a synonym for ‘overgeneralization’ (e.g. Ramscar 

et al., 2013, p. 760; MacDonald, 2013a, p. 7). In the experiment proposed here, I will use neither 

‘regularize’ nor ‘overregularize’, since I am interpreting any overextension as an error rather than 

a way to make the language more systematic.  

Language Production Versus Comprehension Training 

Why am I interested in contrasting the learning consequences of production and 

comprehension? Language production is different from language comprehension in several ways 

that may affect learning. Production is harder than comprehension and requires more attentional 
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resources (Boiteau et al., 2014), which might in turn increase depth of processing and thus 

learning during production. Language production and comprehension typically draw on different 

memory processes: production often involves recall whereas comprehension involves 

recognition. Recall practice has in turn been shown to lead to better learning than recognition 

practice (Roediger & Karpicke, 2006). People also tend to remember words they themselves say 

better than words they hear another person say (MacLeod & Bodner, 2017; Hoedemaker et al., 

2017; Yoon et al., 2016). Finally, language production involves making task-relevant choices, 

which for other motor tasks has been shown to improve learning (Carter & Ste-Marie, 2017). I 

will revisit these differences and more in the third section of this review to see whether there is 

evidence that they may impact not just learning but also generalization.  

Based on these differences between production and comprehension, we hypothesized that 

language production training might be a stronger learning experience than language 

comprehension training (Hopman & MacDonald, 2018) – not just for single words, as had been 

shown in memory studies (Karpicke & Roediger, 2008) but also for grammatical dependencies 

between words. To test this, we designed an artificial language learning experiment that 

contrasted production and comprehension training in a between-subjects design that carefully 

balanced attention and other less interesting task demands. We found that, even when controlling 

for individual vocabulary knowledge, participants with production training outperformed 

participants with comprehension training on grammar comprehension tests.  

While this is a promising result, participants in this study were not truly tested on 

generalization. The grammatical dependency of interest was a gender-like suffix agreement on 

nouns, adjectives and verbs that was deterministically dependent on the type of monster the 

sentence described. Critically, participants were tested on novel combinations of familiar 
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elements (e.g. a different sentence about a familiar monster), but never on novel elements that 

would have required generalizing the suffix use to new vocabulary words. Given that production 

participants did better on novel combinations of familiar elements, I expect that production 

participants would also outperform comprehension participants on true generalization trials, but 

we have not tested this yet.  

These results, while expected based on single word memory findings, were surprising in 

the light of the second language acquisition literature. A meta-analysis in that literature found 

that, especially when measured within one week, comprehension performance benefits more 

from comprehension than production instruction (Shintani et al., 2013). A critical difference, that 

we believe explains why we found such different results, is the way in which production training 

was implemented in our experiment. Second language acquisition experiments have typically not 

tried to equate task demands, and have often implemented production as simply reading out loud 

or repeating a phrase given by a teacher (e.g. Macdonald et al., 1994). Again drawing on the 

memory literature, there is evidence that for learning single words, retrieval practice that 

involves generating the word from memory is more effective than simply repeating a teacher 

(Kang et al., 2013). Tasks like repeating a teacher or reading out loud don’t involve generating 

the to-be-learned language from long-term memory in order to plan and produce a sentence, and 

are thus missing precisely the elements that we hypothesize make production a stronger learning 

experience. Thus, while the second language acquisition literature has often tested 

comprehension versus production and theorized about it, these results are less relevant because 

of the unbalanced way in which the contrast between production and comprehension was 

implemented. 
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There are some hints that, in naturalistic second language learning, production might be a 

stronger learning experience than comprehension.  De Wilde et al. (2019) investigated which 

type of experience with English is most predictive of Flemish kids’ level of English at the start of 

formally learning the language in school. They found evidence that interactive types of 

experience (e.g. gaming, using social media in English) were more predictive of level of English 

proficiency than passive types of experience (e.g. reading and watching television in English). Of 

course, one important difference with passive exposure is that these interactive types of exposure 

include production. Furthermore, language learners who are immersed in a foreign language 

context learn that language much better than non-immersed learners (Barik & Swain, 1978; 

Fortune, 2012; Hartshorne et al., 2018) – and one big qualitative difference between immersion 

and non-immersion contexts is that learners are forced to speak the foreign language frequently. 

This benefit of immersion learning, among other findings, led to the proposal of the ‘output 

hypothesis’ in second language acquisition which, contrary to mainstream theories at the time, 

focuses on ways in which production can be helpful for learning a second language (Swain, 

2005; for criticisms, see Krashen, 2003).  

It is well-established that in infants, comprehension, referred to as perception at the sound 

level, shapes production. Infants’ babbling shows influences of the language they hear in their 

environment (e.g. Goldstein & Schwade, 2008), and children learn to speak the language they 

hear around them, even when they are adopted into a country with a language very different from 

the language they are initially exposed to (Pallier et al., 2003). Generally, research on children’s 

language development has overwhelmingly focused on the importance of the input children are 

exposed to, like the ’30-million-word-gap’ (Hart & Risley, 1995). However, some more recent 

evidence points to children’s own opportunities to produce language as potentially an even more 
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important predictor of language learning outcomes. For example, the amount of conversational 

turns a child has with their caregivers is a stronger predictor of language outcomes than the 

amount of input the child receives (Zimmerman et al., 2009). In even younger babies, there is 

evidence for a social feedback loop, where speech-like sounds the infant makes trigger parental 

response (Warlaumont et al., 2014). There is experimental evidence that babies can learn from 

such feedback that is time-locked to their own productions (Goldstein & Schwade, 2008), 

pointing to an important role for early production (babbling). Furthermore, spontaneous imitation 

of caregiver speech by infants predicts vocabulary at a later age (Masur, 1995).  

Finally, children with SLI tend to have concurrent motor difficulties (Sanjeevan et al., 

2015); if motor skills are impaired in these children, this would impact their language production 

skill more than their language comprehension skill. Speculatively, if language production indeed 

plays an important and different role in language learning from language comprehension, then 

motor impairments affecting production skill might have relatively big downstream 

consequences on general language learning ability. Thus, there is plenty of suggestive evidence 

throughout early language development that language production might play a more important 

developmental role than it is usually thought to do, pointing to the need to move beyond just 

measuring and trying to improve only the input that a child receives. 

Direct evidence for the claim that production can also shape perception in young infants 

is more recent. A teether toy that impairs tongue movement can influence perception of sound 

contrasts in 6 month old infants, showing a sensorimotor influence on speech perception 

(Bruderer et al., 2015; Choi et al., 2019). Furthermore, there is evidence that the sounds an infant 

can produce stand out in the input and are processed differently, because of the richer motor 

processing associated with those sounds (articulatory filter hypothesis; Vihman, 2017; DePaolis 
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et al., 2011). While these studies don’t speak to generalization immediately, they are in line with 

accounts in which production experience provides a different and strong learning experience 

with downstream consequences for comprehension (MacDonald, 2013a).  

With regards to generalization, Vihman (2017) has noted that children sometimes seem to 

form a preferred template for production based on some early produced words, which they then 

overapply to words they subsequently learn to produce. She provides the example of German 

learning infant Annalena, who starts off with many words consisting of a duplicated syllable, and 

overgeneralizes that pattern to e.g. ‘baba’ for ‘bauch’ (belly). It would be interesting to know 

whether children would accept these overgeneralizations in comprehension if e.g. their parent, 

who normally says ‘bauch’, says ‘baba’ to refer to belly. At the sound level, children can hear 

distinctions that they themselves cannot produce yet (e.g. ‘fis’ and ‘fish’, Berko & Brown, 1960), 

and do not accept similar mispronunciations from adults. Thus, it’s possible that these 

overgeneralized templates are specific to production, and might be caused by production 

difficulties (MacDonald, 2013a) – specifically, overgeneralized forms like ‘fis’ and ‘baba’ may 

simply be easier for the child to produce. 

At the sound level, production practice with adults has had mixed results. Baese-Berk and 

Samuel (2016) found that production training impairs learning of a non-native sound contrast, 

whereas perception training improved this learning. Bixby (2017) studied several different sound 

contrasts and found that production practice improved perception only in the cases where 

participants had started to be able to distinctly produce the different foreign speech sounds. This 

might explain the difference in results with our morphology-focused study (Hopman & 

MacDonald, 2018): in our study, the phonetics of the artificial language was purposefully simple, 

and virtually all production participants managed to produce the different words and their 
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grammatical suffixes successfully on at least some trials. It has also been hypothesized elsewhere 

that perception and the perceiver’s needs are most important at the level of prosody and 

pronunciation, whereas production and the producer’s needs might play a more important role at 

the lexico-syntactic level (MacDonald, 2013b). Regardless, while the effect of production versus 

perception training on generalization has been investigated at the sound level (e.g. Bixby, 2017) 

the mixed results as well as the possibility that the perceiver’s and producer’s needs play 

different roles at the sound level make it hard to draw conclusions or make predictions for the 

grammar level.  

In summary, much of the existing research that directly contrasts language production 

and comprehension training either doesn’t speak to generalization (e.g. Hopman & MacDonald, 

2018) or isn’t informative because of mixed results (e.g. Bixby, 2017) or unbalanced experiments 

(Shintani, Li & Ellis, 2013). That being said, there are theories drawing on experimental 

evidence in both infants (Vihman, 2017) and children and adults (MacDonald, 2013a) proposing 

that language production plays a special role in language learning with downstream 

consequences for language comprehension. In line with this, one might expect language 

production to also improve generalization for regular forms and to potentially lead to more 

overgeneralization than language comprehension.  

Testing Production Versus Comprehension in Language Learning 

I now turn to three related areas of the grammar learning literature: studies on the English 

past tense and plural, studies on how humans retreat from overgeneralization and studies on 

language change. Each of these three areas has their own research questions, theoretical debates, 

and variables of interest they typically manipulate in experiments, and could merit a review on 

their own. Here, rather than try to review these areas in full, I mostly sample papers that have 
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tested both comprehension and production, as well as some papers that are typical for how each 

area has been approached. 

The English Past Tense and Plural 

A well-studied example of overgeneralization at the morphology level is the English past 

tense. Regular verbs in English get the suffix ‘-ed’ to indicate past tense (e.g. ‘walk’, ‘walked’). 

Many frequent verbs in English are irregular and have an idiosyncratic past tense (e.g. ‘eat’, 

‘ate’). However, learners of English, both children and second language learners, will 

occasionally overgeneralize the regular past tense rule and apply it to irregular verbs, creating 

overgeneralized forms like ‘eated’ by simply adding ‘-ed’ to the present tense form of the 

irregular verb. 

Overgeneralizations are typically thought of as a language-production phenomenon. 

Overgeneralizations are present in learners’ speech, and since adult native speakers don’t tend to 

produce them, it doesn’t seem meaningful to think about them in comprehension at all. That 

being said, overgeneralizations are rare in spontaneous speech, making it hard to study them. In 

order to investigate generalization in language learning, Berko (1958) developed the famous wug 

test. In this elicited production task, children are exposed to a form like the present tense of a 

novel pseudo-English verb (e.g. ‘spow’), and then asked to finish a sentence that prompts them to 

generate the past tense (e.g. ‘Yesterday he …..’). Of course, this elicitation task also works to test 

the learner on the past tense of known verbs. Even in elicited production studies like these, errors 

are relatively rare, meaning that researchers need to collect a substantial amount of data in order 

to have enough errors to analyze.  

In addition to these elicited production tasks, which are effortful for the child and the 

researcher both, grammaticality judgment tasks are often used to test children’s judgment of 
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overgeneralization errors. In an example task, a child might hear a puppet say ‘Yesterday he 

eated’ and be asked to judge on a sliding smiley scale, a child-friendly version of a Likert scale, 

whether the sentence the puppet says sounds good or bad (e.g. Ambridge et al., 2008). An 

obvious advantage of this is that the researcher can get a learner to respond to any form they are 

interested in, rather than waiting for the learner to produce that specific form spontaneously. The, 

often implicit, assumption is that forms that the learner endorses in a grammaticality judgment 

task are forms that they would produce themselves, and many review papers aggregate data from 

these different tasks without distinguishing them (e.g. Ambridge et al., 2013; Goldberg, 2016). 

The data I’ll review next will challenge that assumption.  

Table 1 

Past Tense Production (Kuczaj, 1977) and Comprehension Data (Kuczaj, 1978) 

Note. Sp. Pr.: Spontaneous Production; Elic. Pr.: Elicited Production in a version of the wug-task. 

Forc. Ch.: Forced Choice. Acc. Jud.: Acceptability Judgment; both this and Forced Choice are 

considered comprehension tasks; y..: years old.  

I’ll review Kuczaj’s (1977, 1978) past tense data here (see summary in Table 1). There 

are several reasons I focus on these data. First of all, the two main competing theories in the past 

tense debate both cite and draw on these data (e.g. Marcus et al., 1992; Rumelhart & 

McClelland, 1986). Second and more importantly, they provide a thorough comparison of 

English past tense performance by different age groups on several different comprehension and 

Age 

(y.) 

Grammatical 

(ate) 

Base+ed ungrammatical 

(eated) 

Past+ed ungrammatical 

(ated) 

Sp. 

Pr. 
Elic. 

Pr. 

Forc. 

Ch. 

Acc. 

Jud. 

Sp. 

Pr. 

Elic. 

Pr. 

Forc. 

Ch. 

Acc. 

Jud. 

Sp. 

Pr. 

Elic. 

Pr. 

Forc. 

Ch. 

Acc. 

Jud. 

3-4 77% 71% 71% 99% 15% 29% 28% 77% 9% 0% 1% 25% 

5-6 - 51% 19% 98% - 42% 18% 52% - 7% 63% 80% 

7-8 - 99% 98% 100% - 1% 2% 19% - 0% 0% 4% 
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production tasks. I will identify three patterns of results in these data that we will see repeated 

throughout the rest of this section. Note that, as explained earlier, I view succesful generalization 

and overgeneralization errors as two sides of the same coin, – thus, I expect to see similar 

patterns for succesful generalization as for erroneous overgeneralization (see section Defining 

Generalization). 

Pattern (a): Overgeneralization Errors Are a Production Phenomenon. On the 

surface, the data in Table 1 (focus on numbers highlighted in green) seem to match the classic 

narrative of English past tense acquisition. Production in an elicitation task shows a U-shaped 

pattern across ages, with young, 3-4 year old kids initially producing mostly correct irregular 

past tense forms like ‘ate’, followed by a period in which 5-6 year olds’ performance on 

irregulars drops off, until they are at ceiling around 7-8 years old (leftmost green column). 

Meanwhile, overgeneralized erroneous forms like ‘eated’ go through an inverse U-shape, 

showing that that’s what kids are producing instead of the correct form (rightmost green 

column). Finally, kids in all of these age groups judge correct irregular past tense forms like ‘ate’ 

as correct (>98%), irrespective of where their production is at, confirming that 

overgeneralization errors are a production phenomenon (yellow column). 

A related example is data for the English plural. Ramscar & Yarlett (2007) find in a 

behavioral experiment that 3-5 year old children’s comprehension of the plural is above chance 

and better than their production (Figure 2). Children score on average 66% correct in a forced 

choice comprehension task between the correct irregular plural and an overgeneralized plural, 

and 80% correct in a multiple choice comprehension task where they choose between pictures of 

several singular and plural objects. In contrast, they only produce correct irregular plurals on 

20% of the trials, compared with 51% erroneous overgeneralized plurals (e.g. ‘mouses’). We’ll 
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see this pattern, of more overgeneralization errors in production than comprehension tasks, come 

back across different areas of the literature. 

Figure 2 

Example English Plural Data 

 

 

 

 

 

Note. 3-5 Year old children’s performance on the English plural in an elicited production task and 

two different comprehension tasks as reported in Ramscar & Yarlett (2007). Note that due to the 

different nature of the three tasks, each task had different types of possible responses. Only the 

two most common response types across tasks are relevant for this review and depicted here. 

Pattern (b): Task Demands Matter Beyond Production Versus Comprehension. 

However, looking at the rest of Kuczaj’s data in Table 1 more closely reveals that the narrative of 

overgeneralization as a pure production phenomenon is too simplistic. At 5-6 years old, the 

bottom of the classic U-shape, the results of the forced choice comprehension test (grey 

highlighting) show a striking pattern: given a choice between three forms like ‘ate’, ‘eated’ and 

‘ated’, kids at this age prefer erroneous hybrid forms like ‘ated’, despite barely ever producing 

these forms themselves and despite rating correct irregular forms higher on acceptability 

judgments. This is our first example that sometimes, two different comprehension tasks show 

different patterns of accepting overgeneralization errors. Similarly, there is evidence that adults 
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make overgeneralization errors according to a frequency by regularity interaction in a task where 

they generate the past tense from the present tense stem, but not in a task where they generate the 

past tense from a picture (Woollams et al., 2009). Thus, different production tasks can also show 

different patterns of results, showing again that task demands matter in a way that is more subtle 

than just production version comprehension. 

Pattern (c): Evidence of Overgeneralization in Production and Comprehension 

Tasks. Finally, it is fairly common in the literature to only measure generalization performance 

in either a production or a comprehension test. For example, Ramscar et al. (2013) see 

overgeneralized plurals in a picture-elicited production pretest for both 4- and 6-year old 

children. I note here as well that, while Ramscar and Yarlett conclude from their data that 

“children who over-regularize plurals in production nevertheless have representations of the 

correct adult forms in memory” (2007, p. 940), I myself would draw different conclusions from 

their data. While the reported scores of 66% and 80% correct in the two comprehension tasks are 

significantly above chance and significantly better than the number of correctly produced 

irregular plurals, my guess is that the 33% choices of erroneous overgeneralized forms like 

‘mouses’ is significantly above 0% (Figure 2). Thus, I would conclude that we can see evidence 

of overgeneralization errors in both comprehension and production tests, albeit significantly 

more in the latter. 

Now that I have identified three patterns of results when both production and 

comprehension are tested based on the English past tense literature, I will review literature on 

retreating from overgeneralization and language change, to see whether studies in those fields 

have shown similar patterns of results. 
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Retreating From Overgeneralization Errors 

While children make overgeneralization errors like ‘eated’, they eventually learn to 

express meanings like these in the same way that adult native speakers do. The learning 

strategies people can draw on to retreat from overgeneralization errors while at the same time 

maintaining the ability to generalize rules when appropriate (a problem known as Baker’s 

paradox) has generated a vast amount of research (see Ambridge et al., 2013 for a review). Here, 

I again mainly sample papers that have tested both production and comprehension, and in doing 

so we will see several of the patterns identified in the past tense and plural literature repeated.  

Wonnacott and colleagues did several experiments to determine how adults and kids 

generalize based on distributions in the input, and tested participants afterwards on production 

and forced choice comprehension. Furthermore, they tested child participants in an act out 

comprehension task and adult participants in a grammaticality judgment task. Interestingly, they 

show evidence that adults are more willing to generalize in their own productions and forced 

choice judgments than in their grammaticality judgments, which were more conservative, staying 

closer to the input (Wonnacott et al., 2008). In this, we see patterns (a), more generalization in a 

production than in a comprehension task, and (b), not all comprehension tasks show the same 

patterns of overgeneralization, repeated.   

Children, like adults, show strikingly similar patterns of generalization in both the 

production and forced choice comprehension tasks, and actually show a similar pattern of results 

in their third task, act out comprehension (Wonnacott et al., 2013) – this is an example of pattern 

(c), similar generalization in production and comprehension tasks. Likewise, Perek and Goldberg 

(2015, 2017) conducted several studies looking at the role of construction meaning in 

generalization behavior with adults, and found that analyzing the production tasks and the 
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comprehension tasks (in this case, grammatical judgments) led to similar conclusions about how 

adults generalize.  

One well-researched example of a learning strategy that can help solve Baker’s paradox 

is pre-emption, in which a novel, overgeneralized form is pre-empted by a different form that 

means the same but is available in the input. Goldberg (2016) proposes competition-driven 

learning and prediction as mechanisms for pre-emption in native speakers. If a listener is 

presented with forms like ‘He made me giggle’ whenever they are predicting a form like ‘He 

giggled me.’, there will be a prediction error, which will in time teach the listener to expect (and 

use) the attested form.  Evidence for the use of pre-emption as a learning strategy comes mainly 

from grammaticality judgment tasks in comprehension-only studies. For example, adult native 

speakers of English rate novel, unattested uses of English verbs with a competing alternative as 

less acceptable than novel uses without a competing alternative (Robenalt & Goldberg, 2015). 

Thus, the overgeneralization ‘He slept the afternoon away.’ is more acceptable to native speakers 

than the overgeneralization ‘He giggled me’.  

Non-native speakers do not differentiate in their ratings between novel uses with or 

without a competing alternative (Robenalt & Goldberg, 2016) – evidence of overgeneralization 

errors endorsed in studies that test only comprehension, fitting with pattern (c). This is in line 

with other work showing that even highly fluent non-native speakers do not engage in predictive 

processing, at least at the grammar level, to the same degree that native speakers do (e.g. Grüter 

et al., 2012). Within Goldberg’s framework, if non-native speakers do not predict the competing 

alternative, there is no prediction error for them to learn from and unattested (overgeneralized) 

forms are not unexpected. In a similar study, Tachihara and Goldberg (2019) show production 

evidence for overgeneralization in non-native speakers and hypothesize that this is because non-
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native speakers make less use of pre-emption, because they don’t predict during online 

comprehension to the same degree that native speakers do – a comprehension explanation for a 

production phenomenon. 

Language Change 

This same overgeneralization phenomenon is studied under a different name, 

overregularization, to answer questions about language change. In this literature, the 

overgeneralization ‘errors’ are seen as a consequence of learnability biases that make a language 

more regular. Hudson Kam and Newport’s (2005) seminal paper is the first well-known example 

of a language learning experiment that directly sought to investigate language change. In this 

study, participants learned an artificial language which contained unpredictable variation in 

determiner usage in the input. After learning, participants were tested on their determiner use in a 

sentence completion test. Participants also completed a grammatical judgment test, where they 

had to rate novel sentences.  

This experiment showed that adult participants probability matched with the input, 

whereas children regularize the input. So, in the production task, the proportion of nouns that 

adults produced with determiners roughly matched the percentage in their input, whereas most 

children either chose to always produce determiners, or to never produce them, thus making their 

own output more systematic than the input language they were exposed to (by making 

overgeneralization ‘errors’). The grammaticality judgment task showed a similar pattern of 

results to the production task for each of the two age groups – thus, this study falls under pattern 

(c), with similar levels of overgeneralization in production and comprehension tasks. In a follow-

up study, the authors wanted to see whether, given even more variable input, adults would look 

more like children and regularize the language (Hudson Kam & Newport, 2009). This variable 
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input made it virtually impossible for adults to fully probability match, and in both the 

production and the grammaticality judgment task adults show evidence of regularizing the input: 

the more variable their input, the more adults regularize (by making overgeneralization ‘errors’). 

This again falls under pattern (c), with the production and comprehension tests showing a similar 

pattern of results.  

The authors also do a simpler variant of this second experiment with kids. Interestingly, 

in this experiment, kids show evidence of overgeneralization errors in their productions but not 

in a comprehension task, in line with the classic view of overgeneralization errors as a 

production phenomenon (pattern a). In a much smaller scale study, Schwab et al. (2018) focused 

on explicitly contrasting comprehension and production tests. Children are exposed to a small 

language that takes different verb modifiers for masculine versus feminine nouns. When tested 

on production, they make many overgeneralization errors, but when tested on comprehension 

they do not accept these errors, similar to the children in Hudson Kam and Newport (2009), and 

again in line with pattern (a), overgeneralization errors as a production choice. 

Conclusions From Research Testing Production Versus Comprehension 

While I have reviewed all studies in this section through the lens of results in production 

versus comprehension tests, it is worth noting that in almost none of these studies (except 

Schwab et al., 2018), comprehension versus production was explicitly manipulated as the 

contrast of interest. An important consequence of that is that, since it was not explicitly 

manipulated, production and comprehension tests were not balanced for task demands. 

Furthermore, of course all of these studies did manipulate other contrasts, informed by the 

central questions and theories of those literatures – for example, the different roles children and 

adults might play in language change (Hudson Kam & Newport, 2005; 2009). Together, these 
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two reasons may explain why the results of production and comprehension tests in various 

language learning studies seem fairly disparate, at least at first glance. I identified the following 

three main patterns in the results:  

(a) More (over)generalization errors in production than comprehension tests (e.g. Schwab et 

al., 2018), in line with the view that overgeneralization by learners could, at least in part, 

be stemming from task differences between production and comprehension (MacDonald, 

2013a). 

(b) The importance of looking at task demands for (over)generalization beyond a simple 

production versus comprehension distinction. We have seen that sometimes, different 

production tasks (e.g. Woollams et al., 2009) show different patterns of 

overgeneralization errors, and sometimes, different comprehension tasks (e.g. Kuczaj, 

1978) show different patterns of accepting or choosing erroneous overgeneralized forms.  

(c) Finally, it is common to find similar patterns of results for (over)generalization in both 

comprehension and production tests (e.g. Hudson Kam & Newport, 2005), and to find 

(over)generalizations in one of the two when only one is tested (e.g. Robenalt & 

Goldberg, 2016 for comprehension; Ramscar et al., 2013 for production). 

Perhaps more telling is the pattern of results that is absent here: evidence of more 

(over)generalization errors in comprehension than production. A comprehensive meta-analyses 

of each of the three mentioned literatures is beyond the scope of this introduction, but it is 

suggestive that in specifically sampling studies that tested both production and comprehension, I 

found no such results. Thus, my conclusion of the behavioral evidence reviewed across these 

three different areas of language learning research is that while overgeneralization errors happen 
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in both comprehension and production, if anything they happen more in production than 

comprehension, and certainly not the other way around.  

Comprehension- and Production-Like Training in Non-Language Research 

Because of this limited informativeness of the language learning literature, I now turn to 

other areas of psychology where some contrasts have been studied that resemble production 

versus comprehension training. These are not language learning studies (at most, they are about 

learning new words), and so the evidence they provide is merely suggestive for potential 

differences between production and comprehension training. As we will see, these studies speak 

mostly to how production might affect generalization – overgeneralization, the flip side of the 

coin where applying a learned regularity leads to errors, is either not relevant in these literatures 

or has not been studied extensively yet.  

The Testing Effect and Retrieval-Based Learning 

In education and memory research, an important and well-studied contrast is between 

recognition and recall training. Recall training, also called retrieval training, is any practice 

activity with to-be-learned materials that requires the student to generate the materials from 

memory. A large body of research has convincingly shown that, compared to a restudying 

condition, where students get to read the materials several more times, any condition that 

involves retrieving the materials from memory improves learning (Karpicke & Roediger, 2008; 

Roediger & Karpicke, 2006; see Adesope et al., 2017 for a meta-analysis). There is a clear 

parallel here with production versus comprehension training: production generally involves 

memory retrieval whereas comprehension involves recognition.  

The typical control condition in these memory experiments, restudying, resembles 

passive comprehension. From a cognitive perspective, these two tasks aren’t very well-
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controlled: the retrieval condition involves an active task with overt responses whereas the 

control condition doesn’t require overt responses. That being said, students often choose to 

reread materials as their main mode of studying for exams, so the more passive control condition 

is very ecologically valid. An interesting parallel here is that foreign language students often find 

it scary to speak in the language they are learning and may avoid speaking for this reason 

(Young, 1990), despite production potentially improving learning compared to comprehension 

practice.  

However, some education studies have used active comprehension tasks as well, e.g. 

multiple choice tests. Interestingly, this literature has also noted task-dependent results. For 

example, production-like short answer tests generally lead to better learning than limited 

retrieval fill-in-the-blank tests or comprehension-like multiple choice tests (Hinze & Wiley, 

2011; Kang et al., 2007). Furthermore, a note-taking control condition (another form of 

production) provides an equivalent learning boost to a free recall condition (McDaniel et al., 

2009). 

As to generalization, there is some evidence that testing, compared to rereading, leads to 

better performance on near transfer questions (Butler, 2010; McDaniel et al., 2009). Other 

studies that did not find transfer (e.g. Tran et al., 2015) are again accounted for by noting 

important task differences: when they are redone with a different task format (e.g. simultaneous 

presentation of facts instead of one by one presentation), transfer is found (Eglington & Kang, 

2018). A recent meta-analysis estimated the effect size of transfer for inference questions at d = 

0.32, with a 95% Confidence Interval of [0.085, 0.56], establishing that there is moderate transfer 

on educational materials (Pan & Rickard, 2018, Table 2). While the methods and materials in 

these studies are fairly different from typical language learning experiments, at least these results 
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suggest that production, which involves retrieval, might indeed help benefit transfer, which I 

view as akin to generalization.  

Nearly all of the memory research I reviewed here draws on verbal materials and tasks. 

Even when the material to be learned is e.g. biology, the multiple choice and short answer test 

formats used in these experiments rely entirely on language processing. Unfortunately, though 

some views of memory do explicitly cast verbal short term memory as emergent from the 

language production and comprehension processing system in action (e.g. Schwering & 

MacDonald, 2020; MacDonald, 2016), most mainstream memory theories do not draw on 

psycholinguistics. For example, much theorizing about the testing effect focuses on the number 

and distinctiveness of different routes to retrieval (e.g. ‘study memory’ and ‘test memory’, 

Rickard & Pan, 2018). These accounts do not easily lend themselves to integration with 

prevailing psycholinguistic theorizing about how language production and comprehension work.  

Theories that combine psycholinguistics with memory would be mutually beneficial here. 

Our own work is an example of psycholinguistics benefitting from the vast amount of 

experimental results available in the memory literature (Hopman & MacDonald, 2018). 

Conversely, given that the majority of these memory experiments draw on verbal material, it 

stands to reason that bringing what we know about language processing into theorizing about 

these memory processes would further our understanding of those processes (see e.g. Zormpa et 

al., 2019).  

The Production and Generation Effects 

The production effect and the generation effect, two other effects from the memory 

literature that might contribute to a better memory for produced than comprehended items, have 

limited applicability to generalization differences between the two. The production effect 



 25 

(MacLeod & Bodner, 2017) holds that within a list, people remember words that they spoke out 

loud better than words they only heard or read. Theoretical explanations for this production 

effect hinge on comparative distinctiveness of item-specific memory traces. Similarly, the 

generation effect (Begg & Snider, 1987) is another within list memory effect, with people better 

remembering words they generate (with the first two letters given) compared with words in this 

same list that were read normally. This turns out to be an artifact of the unusualness of the 

generation task compared to normal reading, again temporarily increasing the comparative 

distinctiveness of the item’s memory trace rather than changing anything about the item’s 

representation in long term memory. Both of these effects are more easily found in mixed lists 

and fade away in blocked (between-list) designs (Bertsch et al., 2007; MacLeod & Bodner, 

2017). Because of the focus of these experiments on within list effects and of these theories on 

items’ comparative distinctiveness, these literatures cannot currently speak to generalization. 

Both of these effects may reflect isolated, small components of why naturalistic language 

production and free recall testing have a big effect on learning. 

Drawing as Production of Object Representations 

Practice drawing (visually producing) objects improves people’s recognition of those 

objects (Fan et al., 2018), an interesting parallel with how producing language improves 

comprehension (Hopman & MacDonald, 2018). The theoretical emphasis in this work on how 

drawing objects might change object recognition is on how memory representations can change 

by accessing them, and how accessing them in the service of different tasks may change the 

memory representations in different ways (Fan et al., 2018). While the drawing work and its 

emphasis on the role of tasks is relatively new, the idea that memory representations can change 

by accessing them, especially through language, is well-established (e.g. Loftus & Palmer, 1974; 
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for a recent review see Zaragoza et al., 2006). Since the drawing work is explicitly inspired on 

analogy to language production and comprehension, the (developing) theories around it lend 

themselves naturally to application in psycholinguistics. 

Explanation 

Explaining out loud why an exemplar is part of a category that is new to a learner fosters 

the learner’s ability to generalize (as well as the propensity to overgeneralize) category 

membership (Williams & Lombrozo, 2010; Williams et al., 2013). Explaining out loud helps 

people generalize because it focuses attention on the relationships between the different items; 

similarly, we have hypothesized that speaking a new language out loud helps people learn the 

regularities because it increases binding between the different elements in a phrase or sentence 

(see Figure 1 in Hopman & MacDonald, 2018). These explanation experiments have found 

benefits of explanation (production) in contrast with both passive comprehension-like silent 

study conditions and other production conditions (e.g. describe exemplars), again highlighting 

that not all production tasks are alike (pattern b). 

Attention, Depth of Processing, Active Learning, Motivation and Anxiety  

Finally, a relevant difference between comprehension and production that might 

contribute to learning and outcome differences between the two modalities is the amount of 

attention typically required. Production tasks typically require more attention (Boiteau et al., 

2014) and involve greater depth of processing than comprehension tasks. Greater depth of 

processing is associated with better learning and generalization of materials in second language 

learning contexts (Oded & Walters, 2001). In a similar vein, production under typical 

circumstances is a more active task than comprehension – for example, it involves making task-

relevant choices like which words to use. Task-relevant choices have been shown to increase 
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learning and generalization in non-language motor tasks (Carter & Ste-Marie, 2017; Sanli et al., 

2013). One dominant account of the benefit of making task-relevant choices in motor learning 

tasks, called the information processing account, posits that it is the estimation of errors while 

learners wait for feedback that drives the learning benefit (Carter & Ste-Marie, 2017). This is 

reminiscent of error-driven learning in computational models of language learning (e.g. Plunkett 

& Marchman, 1991 for an example modeling the past tense of English). More generally, active 

learning strategies and opportunities are associated with better learning of, for example, 

categories (Markant & Gureckis, 2014; Sim et al., 2015; see Zettersten, 2018 for a review).  

However, it is important to note for all of the research mentioned in the previous 

paragraph that it is possible to disentangle the production versus comprehension contrast of 

interest in this review from both active versus passive learning and deep versus shallow 

processing. It is possible and even common in second language learning research to create active 

comprehension tasks that target deep processing of the foreign language (VanPatten, 2004). 

Similarly, it is possible to reduce processing demands in production tasks – e.g. a task in which a 

student reads vocabulary or a passage in a foreign language out loud does not involve active 

learning or deep processing, especially at the lexical-semantic and grammar levels (see Stroh, 

2012 and works cited therein for examples of such tasks in classroom situations). So, task 

demands and the specific production or comprehension tasks used in classrooms and experiments 

matter hugely. That being said, in more naturalistic language learning situations in which a 

learner has a conversation, production and production planning are more attention-demanding 

and thus potentially more beneficial for learning and generalization than comprehension.  

While so far I have discussed production as being inherently more attention-demanding 

and harder than comprehension, there are other potential differences between production and 
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comprehension related to this: differences in anxiety and motivation. Speaking in a foreign 

language is harder than listening to it, and many classroom students experience speaking anxiety 

(Ansari, 2015; Young, 1990). This anxiety is thought to hamper learning, and this is a reason for 

some SLA theories to advise against production as a good way for learning a second language 

(e.g. Krashen, 2003). Interestingly, some research suggests that there is an inverse U-shaped 

relationship between anxiety and learning outcomes: small amounts of anxiety lead to increased 

effort and thus performance, and large amounts of anxiety lead to decreased performance 

(Eysenck, 1979; MacIntyre, 1999). Thus, as long as the anxiety induced in a speaking task is 

relatively small, increased anxiety may motivate learners to pay more attention or generally put 

in more effort, leading to an increase in performance (see e.g. Fung & Min, 2016, who showed 

that a board game involving a speaking task leads to better learning outcomes). While it has been 

generally established that an increase in motivation leads to better second language learning 

outcomes (Masgoret & Gardner, 2003), it is less clear how exactly language production, 

attention, motivation and learning outcomes interact with each other and with generalization.  

Conclusions From Non-Language Research 

While I see clear parallels between findings that explanation leads to more generalization, 

and that drawing leads to differences in object recognition with our own finding that production 

leads to better comprehension (Hopman & MacDonald, 2018), the experimental tasks used are 

too far removed from language learning to draw strong conclusions from. The observation that 

language production involves memory retrieval leads to more fruitful parallels. Since there is 

some evidence that retrieval practice improves transfer, the same might hold for production 

practice improving generalization in a language learning context.  
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Summary 

I drew on three different areas of literature in this review (Figure 1). First, I reviewed the 

existing language learning literature that explicitly contrasts production versus comprehension 

training to see what it tells us about how the two different training tasks might impact 

(over)generalization (green square in Figure 1). This area of the literature is at once most central 

to my goal and in some ways least informative due to a relative lack of existing studies and their 

applicability. Then, I reviewed three related areas of grammar learning research where several 

published experiments have happened to test generalization and overgeneralization errors in both 

comprehension and production tasks (blue square in Figure 1). These areas of the literature are 

extensive, but because production and comprehension were usually not explicitly manipulated, 

results with respect to this contrast are fairly messy. I found three patterns of overgeneralization 

results: more overgeneralization in production than comprehension tests, different patterns of 

results between different comprehension tests or different production tests, and similar results in 

both comprehension and production tests.  From this, I was able to conclude that there is no 

reason to believe that comprehension tests would lead to more overgeneralization errors than 

production. Finally, I reviewed other areas of cognitive science research that have studied 

contrasts similar to the production versus comprehension contrast of interest here (yellow square 

in Figure 1). Though some of these parallels are speculative at best, from this work I drew 

evidence that production training may lead to better generalization than comprehension training. 

Generalizing Grammatical Dependencies to Novel Lexical Items 

Does production training improve generalization of learned regularities to novel lexical 

items compared to comprehension training? In Hopman & MacDonald (2018), we showed 

evidence that producing during language learning improves comprehension performance on 
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comprehension grammar tests. While this is a promising result, participants in this study were 

not truly tested on generalization. The grammatical dependency of interest was a gender-like 

suffix agreement on nouns, adjectives and verbs that was deterministically dependent on the type 

of monster the sentence described. Critically, participants were tested on novel combinations of 

familiar elements (e.g. a different sentence about a familiar monster), but never on novel 

elements that would have required generalizing these suffixes to new vocabulary words. In many 

language learning experiments, testing a learned regularity on novel words is used as gold 

standard evidence for learning a regularity (e.g. Perek & Goldberg, 2015; Wonnacott et al., 2009; 

Wonnacott et al., 2008). Thus, I designed this experiment to test whether production practice and 

comprehension practice differentially affect how learners generalize trained grammatical 

dependencies when presented with novel lexical items. Following from this, the two main factors 

of interest that I manipulate are learning condition (production versus comprehension) and item 

familiarity (familiar versus unfamiliar, the former being trained lexical items and the latter being 

novel).  

Studies of the past tense and similar phenomena in natural languages often show a 

frequency by regularity interaction (see Woollams et al., 2009 for an in-depth discussion), with 

learners more likely to make mistakes on infrequent, irregular items. Overregularization in 

language change studies often takes a slightly different form, with regularities from e.g. a more 

common gender being applied to nouns from a less common (but still regular) gender (see e.g. 

Hendricks et al., 2018, for a natural language example of this). In keeping with these latter 

experiments, I will teach participants to pluralize nouns in different regular categories, with one 

category being more frequent than the other, even though individual items are all equally 
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frequent. This is the third factor of interest that I manipulate: neighborhood size (large versus 

small).  

So why might production training help, or hurt, participants when generalizing a 

regularty to novel lexical items? In finding that production practice improves comprehension 

performance, we argued that language production has a strong effect on learning especially 

during the processing involved in planning a sentence (Hopman & MacDonald, 2018). While the 

learner is planning what to say, elements of the utterance are held together in working memory, 

which allows binding of the dependencies between the different words to happen. What is 

unclear from the Hopman & MacDonald experiment is how lexically specific this binding of 

different types of features is, and whether or not it would extend to production training 

improving the binding between a category of grammatical features and a set of visual features, in 

absence of the specific (lexical) item. My hypothesis here is that this stronger binding of features 

relevant to grammatical regularities during utterance planning also increases the ability to 

correctly generalize. For example, in the  artificial language in Hopman & MacDonald (2018), 

production training could lead to stronger associations between a given morpheme (e.g. ‘-ok’) 

and certain visual features of the aliens (e.g. multiple legs and eyes). This should then make it 

easier to combine those same visual features and the same morpheme when processing a novel 

instance, e.g. a novel scary-looking monster with multiple legs and eyes. 

However, in situations where one regularity is more frequent than another, production 

training could conceivably lead to overgeneralization. For example, in Dutch most nouns get the 

suffix ‘-en’ to indicate plural (e.g. ‘hond’, ‘honden’; dog, dogs) but some get ‘-s’ (e.g. ‘kater’, 

‘katers’; tomcat, tomcats; see also Keuleers et al., 2007). Presented with a novel instance, a 

production-trained learner may default to the suffix most frequently produced and thus most 
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closely linked with the plural, leading to mistakes like *‘kateren’ instead of ‘katers’ (tomcats; see 

Ramscar et al., 2013; Ramscar & Yarlett, 2007). While it may be the case that comprehension-

trained learners would make similar overgeneralization errors, it is conceivable that, since 

production training leads to stronger binding (which may include a stronger association between 

e.g. the plural and the ‘-en’ ending in Dutch), this tendency to overgeneralize to a default option 

may also be stronger for production-trained participants. 

In order to be able to connect my results to other language learning experiments that have 

tested both production and comprehension after learning, this experiment will include a 

production test in addition to several comprehension tests targeting vocabulary and grammar 

understanding. Since my review of other language learning research indicated that learners are 

more likely to make overgeneralization errors in production tests than comprehension tests (e.g. 

Ramscar & Yarlett, 2007), I expect that participants in both learning conditions will commit 

more overgeneralization errors on the production test than on the comprehension tests.  

Note that, when I started designing this experiment, it was unclear how well participants 

would learn the particular artificial language with the particular training procedures. Another 

reason for employing several different tests was to have sensitivity to detect condition effects, if 

any were present. Different tests tended to have different levels of difficulty, I wanted to cast a 

wide net in case some tests would show floor or ceiling results. Also note that it took extensive 

piloting, with relatively big changes to the number of aliens, the training procedure and test 

formats, to get participants to generalize a non-trivial grammatical regularity better than chance 

level. Many similar studies employ multi-day testing sessions (e.g. Mirković & Gaskell, 2016). 

To summarize, in this experiment I will test how well learners generalize learned 

regularities to novel lexical items, by analyzing patterns of overgeneralization errors in both 
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production and comprehension tests. This study will contrast production and comprehension in 

both training and testing. By contrasting these two modalities between subjects in training, I will 

test whether production practice leads to better generalization on novel lexical items. By 

conducting both comprehension and production tests after learning, I will build a connection 

between language learning studies explicitly contrasting production and comprehension training 

with language learning studies finding different patterns of results when analyzing 

overgeneralization errors in production and in comprehension tests without explicitly contrasting 

them. Based on the literature review presented earlier, I hypothesize that production practice 

leads to more accurate generalization of newly learned grammatical regularities when compared 

with comprehension practice. More detailed predictions, as well as a possible alternative 

scenario, are available in Appendix E. 

Method 

Participants 

Participants for this study were recruited through the UW-Madison Psychology SONA 

extra credit pool, and were prescreened for English as a native language, normal or corrected to 

normal vision and hearing, and no color-blindness. A total of 641 participants completed the 

online consent process in qualtrics. Of these participants, 228 completed the experiment and 

provided fully usable data, and another 36 provided partially usable data. The remaining 377 

either did not start or finish the experiment, or their data was unusable for other reasons (see 

Appendix B).  

Materials 

Materials for this study consisted of pictures of aliens and an artificial language in both 

written and recorded audio form that described these aliens.  
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Artificial Language. Aliens were described with simple noun phrases consisting of a 

determiner and a noun with a suffix. There were two different neighborhoods, corresponding to 

the two different visual categories of aliens. Each neighborhood had two unique determiners, one 

for singular and one for plural, and two suffixes, one for singular and one for plural (see Figure 

3; see also Appendix A). In order to create rule frequency differences, there was one large 

neighborhood (12 familiar and 6 unfamiliar aliens) and one small neighborhood (6 familiar and 6 

unfamiliar aliens). Rule frequency differences like these are well-attested in natural languages 

(e.g. the Dutch plural, see Keuleers et al., 2007), and relevant in this experiment because they 

allow for overgeneralization errors, where the more frequently encountered rule for the large 

neighborhood might be incorrectly applied to either the small neighborhood familiar aliens or, 

especially, the less well learned unfamiliar aliens from the small neighborhood. 

Figure 3 

Experimental Stimuli 

Note. There were two different neighborhoods, each with different suffixes and determiners for 

both singular and plural. Participants learned about 18 aliens during training (‘familiar’), and 12 

other aliens (‘unfamiliar’) were briefly introduced through passive exposure at the end of 

training, without active practice, in order to test generalization to novel lexical items.  

Neighbor-

hood

Language familiar unfamiliar Example visual 

stimuliSingular Plural 18 12

Large

dap roozok

dap kredok

dap chagok

lom roozool

lom kredool

lom chagool

12 6

Small

ked pexesh

ked mipesh

ked buresh

jeb pexaaf

jeb mipaaf

jeb buraaf

6 6
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Auditory Stimuli. A list of the 4 artificial language determiners, as well as all 120 

possible stem-suffix combinations (nouns) was created and shuffled into three different random 

orders. A female native English speaker recorded herself speaking all three versions of the 124-

word list into a microphone in a sound-attenuated booth. Two native English speakers rated the 

three recordings of each of the 124 words (grouped by the 4 determiners and 30 stems) for sound 

quality and consistency of pronounciation. Based on these ratings, I then chose the best overall 

recordings and normed these for loudness. Noun phrases were then created by pasting together 

all possible combinations of the 4 determiners and the 120 nouns, with 200 ms silence in 

between the two words.  

Visual Stimuli. There were 2 shape-based categories of aliens (see Figure 3 for 

examples, and Figure A1 for the full set of stimuli). One category consisted of 18 humanoid 

aliens, all standing on two legs with two arms by their sides. The other category consisted of 12 

arm- and leg-less, wider, blob-shaped aliens. Of these 30 aliens, 12 humanoid and 6 blob-shaped 

aliens, the ‘familiar’ group, were actively trained during the training phase of the experiment. In 

order to test generalization to novel lexical items, six of the aliens in each category were not 

introduced until the end of training – this subset of ‘unfamiliar’ aliens was picked randomly for 

each participant individually. For each alien, there was a singular picture of a single alien, and a 

plural picture of two identical aliens next to each other.  

Training 

During training, participants actively learned about the 18 familiar aliens (Figure 3), 12 

from the large neighborhood and six from the small neighborhood. Like in Hopman & 

MacDonald (2018), training alternated between blocks of passive and active trials. There were 12 

training blocks. During each block, six different aliens were trained both passively and actively. 
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Of these six aliens trained per block, four were from the large, and two from the small 

neighborhood. This worked out so that each familiar alien was encountered during four different 

training blocks, twice singular and twice plural, for a total of four passive and four active trials 

per familiar alien.  

Each training block consisted of two sub-blocks: a passive exposure sub-block consisting 

of one passive exposure trial for each of the six aliens trained in that block, and an active training 

sub-block, consisting of one active training trial for each of the six aliens trained in that block. 

Trials were randomly ordered within each sub-block.  

After this, at the end of training, there were four passive-only blocks of training to 

introduce the 12 unfamiliar aliens. Before I introduced these passive-only exposure blocks at the 

end of training, pilot participant performance on several tests was at floor for unfamiliar aliens. 

In these blocks, each unfamiliar alien featured once as singular and once as plural in a passive 

exposure trial. Note that the unfamiliar aliens were only seen in 2 passive trials, whereas the 

familiar aliens were seen in 4 passive and, importantly, 4 active training trials, thus maintaining a 

large familiarity difference. I reasoned that two passive exposure trials was little enough 

exposure that the unfamiliar aliens could still be considered as novel lexical items to test 

generalization performance on, particularly because participants did not do active 

comprehension- or production training trials with these unfamiliar aliens.  

Training Tasks. Participants in all conditions got to know the language during passive 

exposure trials, which were identical for all conditions. During a passive exposure trial, 

participants saw a picture and heard a phrase that described this picture in the artificial language 

(Figure 4A). Then, the same picture was shown, this time with the written phrase below it, and 

the same phrase was played, in order for participants to have ample opportunity to learn the new 
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phrase. Note that written phrases were not present in Hopman & MacDonald’s (2018) original 

passive exposure trials, though they were used successfully in a different study comparing 

production and comprehension training that included a written production test (Keppenne, 

Hopman & Jackson, 2021). Participants had no explicit, active task during these trials, they were 

instructed to pay attention and try to learn the language. In order to contrast production and 

comprehension training in a balanced way, I designed two active training tasks. 

Figure 4  

Example Trials for all Three Training Tasks 

Note. A) Example passive exposure trial – these trials were the same for participants in all 

conditions. B) An active comprehension trial. C) An active production trial.  

Active Comprehension Task. During the first phase of an active comprehension trial, 

participants saw a picture on the screen and heard a phrase in the artificial language (Figure 4B). 

Participants indicated by button-press whether they believed the phrase matched or mismatched 

the picture. Participants then got feedback at the bottom of the screen to indicate whether their 

1. “Dap Roozok” 

1. Phrase is shown, participant makes 

match/mismatch judgment. Participant is told 

whether their judgment was correct.

2. Same phrase paired with correct picture is 

shown and played auditorily.

B) Active Comprehension Trial 1. Dap Roozok 2. ”Dap Roozok” 

2. ”Dap Roozok” 1.

1. Participant is prompted to type a description 

of the picture.

2. The correct phrase to describe the picture is 

shown written and played auditorily.

C) Active Production Trial

1. A picture is shown and audio correctly 

describing the picture with a phrase in the 

artificial language is played.

2. The same picture and the same audio are 

now combined with the written phrase.

A) Passive Exposure Trial 2. ”Dap Roozok” 

Dap Roozok

Dap Roozok

Dap Roozok
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match/mismatch judgment was correct. During the second phase of the active comprehension 

trial, participants heard the same phrase, this time accompanied by the correct picture and the 

written phrase. Thus, on match trials, the picture didn’t change between the two phases of the 

active comprehension trial, but on mismatch trials the picture did change.  

Active Production Task. During the first phase of an active production trial, participants 

saw a picture on the screen accompanied by a typing box (Figure 4C). Participants had to type 

the description of the picture in the artificial language. They indicated by button-press when they 

were done writing. During the second phase of the active production trial, participants saw the 

same picture, heard the correct description in the artificial language and saw the correct phrase 

written on the screen. Thus, the second phase of active production trials was exactly the same as 

the second phase of active comprehension trials.  

I chose a written production test for this study for several reasons. While I can test lab-

participants in a sound-attenuated room with a professional quality microphone, due to the 

COVID-19 pandemic participants completed this experiment at home using their own 

equipment, with varying microphone quality. Written responses are easier to collect and not 

dependent on individual participants’ hardware quality. Finally, written production attempts are 

easier to analyze, since they don’t require transcription and can simply be processed by a script 

computing levenshtein distance between the response and the target phrase.  

Controlling for production and comprehension differences. The two active tasks I 

employed are balanced for a number of known differences between production and 

comprehension: reading experience, attention and making task-relevant choices (Carter & Ste-

Marie, 2017; MacLeod & Bodner, 2017; Sanli et al., 2013). The tasks are roughly equated for 

reading experience: in the first phase of a comprehension trial, participants read a phrase that 
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may or may not be a correct description of the picture; in the first phase of a production trial, 

participants read their own written attempt, which may or may not have been correct. 

Furthermore, both tasks involved making task-relevant choices, thus ensuring that participants 

need to pay attention. 

Testing 

After training, participants completed 4 different tests: a 2 alternative forced choice test, a 

4 alternative forced choice test (containing both items testing stem vocabulary and items testing 

grammar understanding), an error monitoring test and a production test.  

Two Alternative Forced Choice (2AFC) Test. In a 2AFC trial, a participant saw two 

pictures on either side of the screen and heard a phrase in the artificial language (Figure 5; 

Hopman & MacDonald, 2018). Their task was to indicate by button-press, as fast as possible, 

which of the two pictures the phrase described. Dependent variables measured in this test were 

accuracy and Reaction Time (RT). RT was simply measured from the start of the first word, since 

in all trials that first word, the determiner, already carried the grammatical information needed to 

disambiguate which picture matched the phrase.  

This short test assessed participants on their understanding of the grammatical 

regularities for singular/plural and the neighborhood categorizations on the unfamiliar aliens. 

There were two rounds, and each of the 12 unfamiliar alien noun phrases was tested once in each 

round, counterbalanced for singular/plural between the rounds and neighborhoods. The trials in a 

round were presented in random order. 

The first round tested participants on their understanding of the singular/plural rule 

(Figure 5A) by exposing them to a noun-phrase and showing them the same unfamiliar alien 

both singular and plural. If a participant learned which determiners and suffixes marked singular 
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and plural, they should be able to select the correct answer even if the lexical item itself and its 

visual referent were unfamiliar, by generalizing that the same determiners and suffixes could 

mark singular and plural even for unfamiliar lexical items. Specifically, these items assessed 

ability to generalize the singular/plural regularity within each neighborhood.  

The second round tested participants on their understanding of the neighborhood 

categorizations and the grammatical markers for each neighborhood (Figure 5B). It did this by 

exposing participants to a target unfamiliar alien and its auditory description and, as a distractor, 

another unfamiliar alien from the other neighborhood. If a participant learned which visual 

features as well as which determiners and suffixes marked the large and small neighborhoods, 

they should be able to select the correct answer even if they had not memorized the specific 

lexical item – visual referent combination. Thus, these items assessed ability to generalize the 

between-neighborhood regularity. Finally, these items could show overgeneralization errors: 

participants might show a higher tendency to pick large neighborhood distractors for small 

neighborhood targets than the other way around.  

Figure 5 

Example Two Alternative Forced Choice (2AFC) Trials 

Note. Participant could use the A) plurality information or B) neighborhood information in the 

grammatical markers (determiner and suffix) to determine which of the two pictures 

corresponded to the phrase.  

A) First round: singular/plural

“dap roozok”

B) Second round: neighborhood

“dap roozok”
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Four Alternative Forced Choice (4AFC) Comprehension Test. This test used a similar 

format to the 2 alternative forced choice test: the participant heard an auditory phrase and 

indicated by button-press which of 4 images matched the phrase. In this test, I wanted to assess 

learning of the stems as well as learning of the grammatical rules. Each of the 30 aliens (18 

familiar aliens + 12 unfamiliar aliens) was tested twice, once in a grammar-targeting trial and 

once in a stem-targeting trial. If an alien’s stem trial featured the singular noun phrase, its 

grammar trial featured the plural noun phrase (counterbalanced). Trials in this test were 

presented in a random order.  

Figure 6 

Example Four Alternative Forced Choice (4AFC) Trials 

Note. A) In stem trials, participants could only use the noun stem to choose the correct picture, 

since all pictures were from the same neighborhood and had the same plurality. B) In grammar 

trials, participants could use grammatical information to choose the correct picture, since the 

distractors differed in plurality and/or neighborhood. Participants could use the noun stem 

instead of grammatical neighborhood information to choose the correct alien, but not the correct 

number of aliens.  

A) Stem trial

“dap roozok”

B) Grammar trial

“dap roozok”
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Stem Trials. In a stem trial, participants heard a phrase and saw 4 different aliens on the 

screen, all from the same sub-neighborhood (familiar/unfamiliar and large/small) and equal in 

number (Figure 6A). Thus, the determiner and suffix could not be used to select the correct 

answer, and a participant needed to know the meaning of the noun stem in order to select the 

correct picture. These items assessed learning of the stems rather than the regularities. Since the 

first word to disambiguate the target in these trials was the noun, RT was measured from the start 

of the noun. Note that this could lead to a negative RT if a participant made a choice before the 

start of the noun.  

Grammar Trials. In a grammar trial, participants heard a phrase and saw 2 different 

aliens (the target and a distractor alien from the other neighborhood) on the screen in both 

singular and plural providing 4 choices total (Figure 6B). Unfamiliar alien distractors were 

unfamiliar aliens from the other neighborhood, and familiar alien distractors were familiar aliens 

from the other neighborhood. There were more aliens trained in the large than in the small 

neighborhood. This meant that all of the 6 familiar small neighborhood aliens served as a 

distractor item twice, and that a random half of the familiar large neighborhood aliens never 

served as a distractor. With these constraints in place, familiarity of individual aliens could not be 

used to infer the correct answer (and thus could not drive overgeneralization behavior). RT was 

simply measured from the start of the first word, since in these trials that first word, the 

determiner, already carried the grammatical information needed to disambiguate which picture 

matched the phrase. 

Recognizing the plurality and neighborhood of the determiner and suffix was enough to 

get these trials correct in principle (though the noun stem instead of the neighborhood rules could 

be used to select the correct alien but not the correct plurality). Trials with targets from the small 
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neighborhood and distractors from the large neighborhood were of particular interest since they 

provided an opportunity for overgeneralization (it is less likely that people would overgeneralize 

in the other direction and pick a small neighborhood alien when the target phrase described a 

large neighborhood alien).  

Error Monitoring Comprehension Test. In an Error Monitoring trial, a participant 

heard a phrase in the artificial language, and saw the target alien depicted (cf. Keppenne, 

Hopman & Jackson, 2021). Pilot participant performance on this test was at floor when I initially 

did not include these pictures. This was likely due to participants being less focused while 

participating in studies from their own spaces. Note that the picture was never necessary to detect 

the grammatical errors, but might have made it easier to do so because neighborhood and 

plurality information were visually present in the picture of the alien. The participant’s task was 

to indicate by button-press, as fast as possible, whether the sentence they heard was grammatical 

or not. Correct noun phrases were mixed with 3 different types of grammatical errors (see Table 

2). Dependent variables measured in this test were accuracy and RT. RT was measured precisely, 

from the start of the first word in the phrase that could disambiguate whether the sentence was 

grammatical or not; for error types 1 (wrong plurality determiner) and 2 (wrong neighborhood 

determiner) this was the determiner, for error type 3 (wrong neighborhood suffix) and 

grammatically correct phrases this was the noun. 

Since most cells of the 2x2 design consisted of six aliens (see Figure 3; all but the large, 

familiar sub-neighborhood), I wanted to test each of these six aliens on all these four different 

trial types to have as much item-based power as possible. For all six-alien sub-neighborhoods 

(all but the large, familiar sub-neighborhood, which consisted of 12 aliens), each alien occured 
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once in each of three different error types, and once in a grammatically correct phrase. This 

generated 72 trials (54 error : 18 correct), namely 24 per cell (6 aliens*4 trials each). 

 Then, to get the same item-based power, I also included 24 equivalent trials with aliens 

from the 12-alien large, familiar sub-neighborhood (six correct ones and six for each of the three 

different error types). However, this total of 96 trials was too unbalanced, with 3:1 error:correct 

trials. Thus, I added 16 more correct trials, all testing familiar, large neighborhood aliens. The 

resulting 40 trials using the 12 familiar large neighborhood aliens were chosen so that each alien 

occured at least three times total in this test (at least once correctly and at least once with an 

error).    

Thus, the error monitoring test consisted of 112 trials (72 errors:40 correct; see e.g. 

Hopman & MacDonald, 2018 for a similar proportion of correct:error trials).Trials were 

counterbalanced for number within each sub-neighborhood as well as within each error type as 

well as per block. Within each block, the 28 trials were presented in randomized order, and block 

order was also randomized.  

Table 2  

Error Monitoring Example Phrases for all Trial Types for Both Neighborhoods  

 

 

Note. neigh.: neighborhood; plur.: plurality; sg.: singular; pl.: plural.  

Error Type 1: Wrong Plurality Determiner. In the 24 trials of this type, the determiner’s 

plurality was a mismatch with the suffix and picture plurlality. If participants were aware of the 

plurality error on the determiner, they should be faster and more accurate at indicating that 

neigh. plur. correct phrase 1: wrong plurality 

determiner 

2: wrong neigh. 

determiner 

3. wrong neigh. 

suffix 

large  
sg. dap roozok dap roozool ked roozok dap roozesh 

pl. lom roozool lom roozok jeb roozool lom roozaaf 

small 
sg. ked buresh ked buraaf dap buresh ked burok 

pl. jeb buraaf jeb buresh lom buraaf jeb burool 
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phrases like these are ungrammatical. These trials were included to provide a look at participants’ 

ability to generalize the singular-plural rules to the relatively new unfamiliar aliens.  

Error Type 2: Wrong Neighborhood Determiner. In the 24 trials of this type, the 

determiner was from the wrong neighborhood but matched the suffix and picture in plurality. If 

participants were aware of the appropriate determiner for each noun-suffix combination (and 

more generally that neighborhood), they should be faster and more accurate at indicating that 

phrases like these were ungrammatical. If a participant accepted a large-neighborhood 

determiner with a small-neighborhood noun, this was an overgeneralization error. 

Error Type 3: Wrong Neighborhood Suffix. In the 24 trials of this type, the suffix was 

from the wrong neighborhood but matched the determiner and picture in plurality. If participants 

were aware of the appropriate suffix for each determiner-noun combination (and more generally 

that neighborhood), they should be faster and more accurate at indicating that phrases like these 

were ungrammatical. Note that, like in the wrong neighborhood determiner errors (type 2), 

accepting a large neighborhood suffix on a small neighborhood noun constituted an 

overgeneralization error. 

Correct Phrases & Expected Overall Performance. This test included 40 correct 

phrases. Also, note that there were two different ways in which generalization is tested in the EM 

task. As mentioned, all four different trial types tested generalization ability by including trials 

with the 12 unfamiliar aliens. However, as indicated, only wrong neighborhood determiner (type 

2) and wrong neighborhood suffix (type 3) errors tested for overgeneralization errors. Errors that 

participants made on wrong plurality determiner (type 1) and correct phrases for the unfamiliar 

aliens would still indicate trouble generalizing, but would not be examples of overgeneralization 

errors.    
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Production Test. I also tested participants’ ability to describe the aliens, because 

typically production tests are harder for learners and are thus where overgeneralization errors are 

seen (e.g. the wug test; Berko, 1958; Wonnacott et al., 2008). In this test, participants saw a 

picture of an alien (either singular or plural) and had to type the alien’s description in the 

artificial language. Note that this was identical to the first part of an active production training 

trial (but, unlike active production training trials, the production attempt here was not followed 

by the correct phrase to serve as feedback). Every alien was tested twice, once singular and once 

plural, leading to a total of 60 production test trials. The 60 trials were presented to participants 

in random order.  

It is of particular interest to compare how often participants applied large neighborhood 

determiners and/or suffixes to small neighborhood nouns versus the other way around. 

Participants should be more likely to over-apply the more frequently encountered regularity 

associated with the large neighborhood to small neighborhood nouns (a classic 

overgeneralization error) than the other way around. 

Procedure 

Participants completed the experiment using their own equipment in a space of their own 

choosing. After signing up for the experiment online, participants received a link to complete the 

study in their own browser. They were instructed to complete the experiment in one go, in a quiet 

space without distractions, and to reserve 82 minutes of undisturbed time for completing the 2.75 

credit experiment. They could complete the experiment at any time before the deadline of the 

timeslot they had signed up for.  

After the electronic consent form, participants filled out a brief pre-experiment survey 

asking about demographic and language background information (see Appendix C). The 
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experiment started with two simple check trials during which participants heard a simple English 

word (e.g. “uncle”, “friend”) and were asked to type out the word they heard. On the first of 

these trials, participants had the opportunity to replay the audio as often as they wanted in order 

to adjust their computer volume. On the second and every further check trial, participants heard 

the audio only once without the option to repeat it – these check trials served as attention checks. 

Further check trials were included after every 3 training blocks (4 check trials), after the 2AFC 

test (1 check trial), after each 15 4AFC test trials (4 check trials), after each 28 EM test trials (4 

check trials) and after each 15 production test trials (4 check trials). Each check trial was 

followed by a ‘5 minute optional break’ screen, where participants could push a button when 

they were ready to continue. If participants did not press the button to continue the experiment 

within the 5 minute timer (visible on the screen) running out, the experiment stopped and 

participants were directed immediately to the end-of-experiment survey. In this case, they 

received credit for the time spent doing the experiment.  After the production test and the final 

check trial (this one without the option for a break), participants were automatically redirected to 

fill out a brief post-experiment survey (see Appendix C for details).  

Results 

Data processing 

Accuracy and Reaction Time (RT) data were analyzed with separate (generalized) linear 

mixed effects models for each test, with maximum random effects structure (Barr et al., 2013). 

Where necessary because of non-convergence or singularity, the steps outlined by Barr and 

colleagues were used to simplify the random effects structure to achieve convergence and non-

singularity. Each analysis included main effects for learning condition (production versus 

comprehension; henceforth: condition), neighborhood size (large versus small; henceforth 
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neighborhood) and familiarity (familiar versus unfamiliar), all two-way interactions and the 

three-way interaction. All 3 main predictors were centered, with learning condition as -0.5 

(comprehension) and 0.5 (production), neighborhood as -0.5 (large) and 0.5 (small) and 

familiarity as -0.5 (familiar) and 0.5 (unfamiliar). Note that the 2AFC test only included 

unfamiliar aliens, and thus only had the other two predictors and their two-way interaction. Error 

monitoring accuracy data were additionally analyzed with a signal detection analysis to see if 

there were differences in d’ scores for participants in the two learning conditions. RT analyses 

only considered correctly answered trials. Trials outside a participant’s M ± 3SD, as well as trials 

with an RT < 0.2 seconds were excluded. The written responses in the active production training 

and production test trials were pre-processed with a script in several analysis steps, and 

ambiguous production attempts were further processed by human coders (see Appendix D).  

A preregistration done after piloting the final version of this study is available in 

Appendix F. The main text only considers learning condition and (over)generalization results; 

other results are discussed in Appendix G, which also contains all tables with regression results. 

Upon publication in a peer-reviewed scientific journal at the latest, all de-identified accuracy, RT 

and production test data, as well as analyses scripts and de-identified pre- and post-experiment 

survey responses will be made available publicly on OSF.io. 

Comprehension Tests 

Forced Choice Tests.  

Stem Learning. To establish how well participants learned the stem vocabulary of the artificial 

language, 4AFC Noun Trials are reported first (note that these trails were part of the second test 

participants completed). These trials simply tested how well participants could map a stem 

(heard as part of a full noun phrase) to its corresponding alien (depicted amidst 3 distractor 
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aliens). Unexpectedly, participants in the comprehension learning condition were more accurate 

at stems than participants in the production learning condition (Figure 7A, Table G1), as shown 

by a significant negative main effect for learning condition. This advantage for comprehension 

participants was larger for unfamiliar compared to familiar alien stems, indicated by a signficiant 

condition:familiarity interaction. So, comprehension participants especially knew the unfamiliar 

alien-stem mappings better than production participants. Both of these results can be seen in 

Figure 7A (leftmost panel): the blue dots for comprehension participants are higher than the pink 

dots for production participants, indicating higher accuracy on stem learning for comprehension 

participants. The condition difference is larger for the unfamiliar aliens on the right than for the 

familiar aliens on the left. Comprehension participants were also somewhat faster than 

production participants on large neighborhood aliens, as shown by a marginal 

condition:neighborhood interaction (Table G2, Figure G2). All of these results indicated that 

comprehension participants learned the stem vocabulary better than production participants.  

 I had planned, and preregistered, to use a participant’s overall performance on these stem 

trials trials as a covariate in all other analyses in order to control for overall vocabulary learning 

differences when analyzing the learning of grammatical regularities (as in Hopman & 

MacDonald, 2018). However, in planning this, I was expecting performance on these trials to not 

be significantly different between the two learning conditions. To prevent occluding condition 

differences elsewhere, I decided not to include this planned covariate in my other analyses. This 

also greatly improved model run time and convergence.  
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Figure 7 

Main Forced Choice Comprehension Results  

Note. Dots are model predictions, with error bars 95% Confidence Intervals (CIs). 

Grammar Learning. Immediately after training, participants completed the Two 

Alternative Forced Choice (2AFC) Test targeting grammatical understanding of both the 

plurality and neighborhood information encoded in the determiners and suffixes. All items in this 

test were unfamiliar, and had been introduced in passive trials at the end of training, right before 

this test. Participants in both conditions successfully generalized in this test: both comprehension 

and production participants were signficantly above chance on this test (Figure 7B, Table G3). 

This is the first evidence that both comprehension and production participants successfully 

applied the learned grammatical regularities to novel lexical items (the unfamiliar aliens). 

However, participants also overgeneralized: overall, participants were significantly more 
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accurate on large than small neighborhood aliens. This is visible in Figure 7B (middle panel): 

performance is higher on the left for large neighborhood aliens than on the right for small 

neighborhood aliens. So, this first grammar test established that participants successfully 

generalized and applied the grammatical regularities to the novel, unfamiliar aliens. It also 

established that participants found it easier to apply the learned grammatical regularities to the 

more common large neighborhood, which is our first evidence that overgeneralization errors are 

happening. In this first grammar test, there were no condition differences.  

What about grammar trials in the 4AFC test? This test included both familiar and 

unfamiliar aliens, and that instead of 2, there were 4 choices on the screen. The 4AFC grammar 

items showed evidence of overgeneralizations, similar to the 2AFC test: participants were overall 

more accurate (Figure 7C, Table G6) and faster (Table G7, Figure G5) on large than small 

neighborhood items. This is visible in Figure 7C (rightmost panel): accuracy was higher for large 

neighborhood aliens on the left than for small neighborhood accuracy on the right. So, this is 

more evidence of overgeneralizations! Of course, the key research question concerns learning 

condition. There was no main effect of condition, but a significant condition by neighborhood 

interaction indicated that comprehension participants overgeneralized more than production 

participants: comprehension participants made relatively fewer errors on the more common large 

neighborhood aliens, and made relatively more errors on the less common small neighborhood 

aliens. In Figure 7C (rightmost panel), the blue comprehension and pink production dots swap 

for large versus small aliens. This is the first condition difference for overgeneralization errors in 

this study, and as expected, comprehension participants made more overgeneralization errors 

(small neighborhood errors) than production participants.   
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Error Monitoring Test 

Main Analyses. Overall, production participants (M = 1.2, SD = 1.3) had significantly higher d’ 

scores than comprehension participants (M = 0.8, SD = 0.9), showing that across all phrase types, 

production participants were better at discriminating between grammatically correct and 

incorrect phrases t(232) = 2.54, p < 0.05 (Figure 8). Separate models showed that for each of the 

three different types of grammatical errors production participants were significantly more 

accurate than comprehension participants (Tables G9, G11, G13, Figures G6, G8, G10). Since 

these were main effects, this means that production participants outperformed comprehension 

participants across the board, including on unfamiliar aliens testing generalization. This is the 

first condition difference for generalization in this study, and as expected, production participants 

generalize more accurately than comprehension participants.  

Figure 8 

d’ Scores in the EM test by Condition 

Note. Small dots are individual participant scores. Large dots are model predictions, error 

bars are 95% CIs.   
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Post-hoc Analyses. On the wrong neighborhood trials, in which either the determiner or 

the suffix did not match stem neighborhood, there was a potential for overgeneralization errors. 

Specifically, accepting a large neighborhood grammatical morpheme (type 2: determiner; type 3: 

suffix) on a small neighborhood trial (with a small neighborhood stem) would constitute an 

overgeneralization error. Instead, a serial order pattern emerged: when a large neighborhood 

morpheme was followed by a small neighborhood morpheme, participants were likely to catch 

the error (data labeled Lg Sm-Sm and Lg Lg-Sm in Figure 9). Conversely, when a small 

neighborhood morpheme was followed by a large neighborhood morpheme, participants were 

less likely to catch the error (data labeled Sm Lg-Lg and Sm Sm-Lg in Figure 9).  

Figure 9.  

Wrong Neighborhood Serial Order Effect (Stem Neighborhood by Error Location Interaction) 

Note. Labels in text boxes illustrate the serial order effect (Sm = Small, Lg = Large; Determiner 

Stem-Suffix; error underlined). Dots are model predictions, error bars are 95% CIs.   

Sm  Lg-Lg Lg  Sm-Sm Lg  Lg-Sm Sm  Sm-Lg 

Stem 

2. Wrong Neighborhood Determiner  3. Wrong Neighborhood Suffix  
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A post-hoc, exploratory analysis confirmed that this stem neighborhood (stem part of the 

large versus small neighborhood) by error location (wrong neighborhood determiner versus 

suffix) interaction was significant (Figure 9, Table G15). Thus, large neighborhood morphemes 

followed by small neighborhood morphemes were easier to catch than the reverse serial order. 

Another unexpected set of results merited a follow-up analysis. There were significant 

main effects for familiarity in all three error types, and this main effect of familiarity was in the 

expected direction only for wrong neighborhood suffix trials: participants did better at catching 

these errors on familiar than unfamiliar aliens. However, for both wrong plurality determiner and 

wrong neighborhood determiner errors, this main effect of familiarity was in the unexpected 

direction: participants did better at catching these errors for unfamiliar than familiar aliens. A 

post-hoc exploratory contrast analysis confirmed that  participants were signficantly more 

accurate at catching determiner errors for unfamiliar aliens, and suffix errors for familiar aliens 

(Figure 10, Table G16).  

Figure 10 

Model Predictions for Error Location by Familiarity Contrast Analysis (see also Table G16). 

Note. Dots are model predictions, error bars are 95% CIs.   

2. Wrong Neighborhood 
Determiner 

3. Wrong Neighborhood 
Suffix 

1. Wrong Plurality 
Determiner 
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Production Test 

Overall Accuracy. Overall production accuracy was analyzed separately for each 

morpheme. Not surprisingly, production participants significantly outperformed comprehension 

participants on both determiners and suffixes (Tables G17 & G19). This can be seen in Figures 

11 A & C (the leftmost and rightmost panels): the pink dots for the production condition are 

overall higher than the blue dots for the comprehension condition. Production participants 

outperformed comprehension participants for grammatical markers overall, including for the on 

unfamiliar aliens testing generalization. Thus, production participants were better at generalizing 

grammatical regularities than comprehension participants. 

Figure 11.  

Production Test Overall Accuracy Results Per Morpheme 

Note. Dots are model predictions, error bars are 95% CIs.   

A) B) C) 



 56 

By contrast, for stems there was no main effect of condition (Figure 11B, Table G18). 

However, significant interactions of condition with neighborhood and of condition with 

familiarity show that there was a larger condition difference in favor of production for large 

compared to small neighborhood aliens, and for familiar compared to unfamiliar aliens. 

Interestingly, these interactions were further qualified by a marginal three-way condition by 

neighborhood by familiarity interaction, so that the production advantage was flipped in favor of 

comprehension for unfamiliar small neighborhood aliens. Thus, production participants were 

sometimes better, and sometimes worse than comprehension participants at producing stems. 

This can be seen in Figure 11B (the middle panels): the pink dots for the production condition 

are sometimes higher than, and sometimes lower than the blue dots for the comprehension 

condition.  Thus, whereas production participants were better at learning and generalizing 

grammatical morphemes than comprehension participants, they were not unequivocally better at 

learning the stems.  

Overgeneralization. In order to assess overgeneralization, I analyzed, for each 

morpheme separately, what proportion of identifiable artificial language morpheme productions 

was part of the incorrect neighborhood. Thus, in this analysis the data were restricted to only 

trials on which a participant produced a recognizable artificial language form for that morpheme. 

Instead of analyzing correct/incorrect, as in the previous analysis, I analyzed whether the 

produced morpheme was a neighborhood error or not. Specifically of interest here were 

neighborhood errors on small neighborhood trials, because they constitute overgeneralizations: 

instances where participants produced large neighborhood morphemes for small neighborhood 

targets. Thus, the results and figure presented in the main text are the simple effects for the small 

neighborhood, obtained by centering the neighborhood predictor on the small neighborhood; the 
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model with the normal centered predictor for neighborhood is also presented in Appendix G, as 

is a figure that includes the large neighborhood (Tables G20-22, Figure G12). Having established 

these minutiae, I now turn to the actual overgeneralization results.   

First, as expected, for all three morphemes, there was a main effect of neighborhood. The 

proportion of neighborhood errors was always larger for small than for large neighborhood aliens 

(Tables G23-25). Thus, as expected, the production test elicited many overgeneralization errors. 

Second, there was also a main effect of familiarity for all three morphemes, with the proportion 

of neighborhood errors always larger for familiar than for unfamiliar aliens (Figure 12). This is 

as expected: participants made more overgeneralization errors for unfamiliar than for familiar 

aliens. 

Figure 12.  

Overgeneralizations in the Production Test.  

Note. Models depicted here present simple effects for the small neighborhood. Dots are model 

predictions, error bars are 95% CIs.   
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The key question was whether there were any differences in the amount of 

overgeneralization errors made by comprehension and production participants. There was a 

significant main effect of condition for determiners and suffixes (both grammatical morphemes; 

Figure 12A & 12C). Comprehension participants made significantly more neighborhood errors 

than Production participants on determiners and suffixes. For suffixes, we can see this in Figure 

12C (the rightmost panel): the blue dots for comprehension participants are higher than the pink 

dots for Production participants, indicating that comprehension participants made more 

overgeneralization errors.  

For determiners, this main effect was qualified by a marginal condition by familiarity 

interaction, so that the condition difference (comprehension participants making more 

neighborhood errors than production participants) was marginally larger for familiar than 

unfamiliar aliens. It is slightly hard to see in Figure 12A (leftmost panel), but the difference 

between the blue dots for comprehension participants and the pink dots for production 

participants is larger for familiar aliens on the left than for unfamiliar aliens on the right. So, 

comprehension participants overgeneralized more determiners than production participants, 

particularly when describing trained, familiar aliens. Thus, for overgeneralization, like we saw 

earlier in the production test for generalization, there are clear condition effects for grammatical 

markers: production participants generalize more accurately, and make fewer overgeneralization 

errors than comprehension participants.  

What about overgeneralized stems? An overgeneralized stem is a trial where a participant 

used a large neighborhood stem to describe a small neighborhood depicted alien. For stems, there 

was no main effect of condition, meaning that there was no overall difference in how often 
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comprehension and production participants overgeneralized stems. However, there was a 

marginal condition by familiarity interaction, so that comprehension participants made 

marginally more overgeneralization errors on familiar stems, and production participants on 

unfamiliar stems. This is visible in Figure 12B (middle panel): for familiar aliens on the left, the 

blue dot for comprehension participants is higher, meaning that they overgeneralized more 

familiar stems. For unfamiliar aliens on the right, this is flipped, so production participants 

overgeneralized relatively more unfamiliar stems. So, like we saw earlier in the production test 

for generalization, there are no clear overall condition effects for stems: some stems are better 

generalized by production participants, other stems are better generalized by comprehension 

participants; production participants make fewer overgeneralization errors than comprehension 

participants on some stems, but not on other stems.  

Discussion 

I started this dissertation with the question whether production training, compared to 

comprehension training, would improve generalization of learned grammatical regularities to 

novel lexical items. In a literature review, besides identifying at best suggestive evidence that 

production training might indeed improve generalization, I also identified three patterns of 

overgeneralization results when production tests are contrasted with comprehension tests. These 

patterns were (a) more overgeneralization in production than comprehension tests, (b) different 

patterns of results in different comprehension or different production tests, and (c), a similar 

pattern of results in both production and comprehension tests. This combination of a research 

question about training with literature about testing led me to design an experiment in which I 

manipulated comprehension versus production training, and subsequently tested generalization 
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in a variety of different comprehension tests, as well as a production test. I found four major 

results. 

First, across different comprehension and production tests, I found evidence that 

participants trained with active production trials (production-trained participants) outperformed 

participants trained with active comprehension trials (comprehension-trained participants) on 

generalizing a grammatical regularity to unfamiliar lexical items. Production-trained participants 

were better at applying the learned regularity to novel lexical items than comprehension-trained 

participants. Second, I found in several different tests that production-trained participants also 

made fewer overgeneralization errors than comprehension-trained participants. These results will 

be discussed in detail as they connect with the three patterns identified in the broader 

overgeneralization literature. Third, I  unexpectedly found a benefit for comprehension 

participants on stem learning. Fourth, independent of learning condition, I found two serial order 

effects on error monitoring trials. All of these findings will be discussed in turn, after which I 

will also discuss implications for theories of statistical learning, limitations of the current 

experiment and applications and future directions based on these results. 

Generalization 

After learning the artificial language in this experiment, both sets of participants could 

successfully generalize the newly learned regularities, as shown by high performance on a two 

alternative forced choice test targeting grammatical understanding of unfamiliar lexical items. 

However, production-trained participants were better at catching grammatical errors in an error 

monitoring task and were better at producing morphemes that carry grammatical category 

meaning. Interestingly, these were all main effects, rather than interactions with familiarity. 

These results extend the learning benefit for production training found in Hopman & MacDonald 
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(2018) to generalizing to novel lexical items. However, it is not the case that production training 

carries a generalization benefit beyond the general learning benefit previously shown: the benefit 

of production training was roughly similar for applying grammatical regularities to learned and 

novel lexical items. Still, this answers my main research question with a resounding yes: 

compared to comprehension training, production training improves not just grammar learning but 

also generalizing. 

So, production practice improves comprehension test performance, and even leads to 

better generalization of grammatical regularities on comprehension tests than comprehension 

training itself does. Conversely, even comprehension-trained participants who had never before 

produced the artificial language, produced over 25% correct morphemes when describing 

pictures with familiar aliens. Thus, my results clearly support shared representations between 

production- and comprehension processes, allowing for transfer (generalization across 

modalities). However, my results do not support full engagement of production-like mechanisms 

in comprehension processing, as e.g. Pickering and Garrod (2013) seem to suggest. Their 

account is admittedly underspecified enough that it’s not exactly clear what they would predict to 

find in my experiment, but I interpret it as supposing fully shared representations and nearly 

lossless transfer between modalities. If that were the case, different training modalities would not 

lead to the differences in grammar learning and generalization that I find here and we found 

elsewhere (Hopman & MacDonald, 2018; Keppenne et al, 2021). 

In Hopman & MacDonald (2018), we hypothesized that the binding of lexico-syntactic 

elements held in working memory during utterance planning in production is what improves 

learning during production, compared to the possibility of shallow, ‘good-enough’ processing 

during comprehension. However, it was unclear from those earlier results whether that 
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hypothesized binding was lexically specific, or whether production training would also lead to 

improved binding between, in this case, a set of visual features and a category of grammatical 

features, in absence of the specific (lexical) item. Here, I show that production-trained 

participants are better at catching grammatical errors, including on unfamiliar aliens, than 

comprehension participants. Production-trained participants also more accurately produced 

grammatical morphemes, including on unfamiliar aliens. Both of these are evidence of better 

generalization after production training than after comprehension training. These results are in 

line with the interpretation that the hypothesized binding between (abstract) categories, even if 

always happening during learning in the presence of specific lexical items, is strong enough to 

also persist beyond the context of those specific lexical items. 

Overgeneralization 

I also found overgeneralization errors in several tests. On the production test, for small 

neighborhood aliens, comprehension-trained participants made more neighborhood errors – 

overgeneralizations - on grammatical morphemes than production-trained participants. On the 

four alternative forced choice grammar items, all participants made more errors for small than 

large neighborhood target phrases, and a significant condition by neighborhood interaction 

showed that comprehension-trained participants were less accurate than production-trained 

participants on these small neighborhood items particularly. This second result is particularly 

important for my own research question about production versus comprehension training: I show 

that comprehension-trained participants make more overgeneralization errors, even on a 

comprehension test that is closer to their own training task. This shows convincingly that 

comprehension training leads to more overgeneralization errors than production training does.  
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At first glance, this main effect for condition in the production overgeneralization test, 

compared with a fairly subtle condition by neighborhood interaction in a comprehension test, 

conforms to overgeneralizaiton error pattern (a) from the literature: as expected, there is more 

evidence of overgeneralizations in the production test results than in the comprehension test 

results. However, like in the reviewed literature, a closer look confirms that the other two 

patterns of results are also present in my data. I found evidence of overgeneralization errors in 

one comprehension test, but not in the other two where I was expecting to also find 

overgeneralization errors: the two alternative forced choice test results were at ceiling, and the 

error monitoring test instead showed serial order effects. This is an example of pattern (b): 

different comprehension tests show different overgeneralization results. Finally, though the 

evidence for overgeneralization errors may have been stronger in the production than the 

comprehension test, both tests led to the same conclusions: comprehension-trained participants 

made more overgeneralization errors than production-trained participants. This is in line with 

pattern (c): a comprehension and a production test leading to the same conclusion about 

overgeneralizations.  

Thus, interestingly, my experiment manipulating production and comprehension training, 

and using both production and comprehension tests to assess (over)generalization, confirms both 

that production training leads to better generalization (and comprehension training leads to more 

overgeneralization errors) and that all three patterns of overgeneralization results found in the 

literature contrasting comprehension and production tests can show up in a single experiment. 

While this means that the classic story of more overgeneralizations in production than 

comprehension tests holds, this also shows that test modality has other, more subtle ramifications 

for (over)generalization.  
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Just because one test, or one testing modality, does not show a certain expected pattern of 

overgeneralization results, this clearly doesn’t mean another test wouldn’t show the expected 

pattern of overgeneralization results. So a wiser approach, especially in resource-intensive multi-

day learning experiments, might be to always implement several different tests after learning 

(e.g. Hudson Kam & Newport, 2005, 2009; Wonnacott, Boyd et al., 2012; Wonnacott, Newport 

et al., 2008). That way, if real effects are present, they are more likely to be detected, even when 

it is not clear a priori how well learners will do and which tests may not be sensitive due to floor 

or ceiling effects. This was part of the reasoning for my own experiment to include several tests 

of different levels of difficulty.  

Finally, two patterns of results were present neither in the literature review nor in my own 

results. Due to task demands, it seems unlikely that a comprehension test would ever show more 

overgeneralizations than a production test. Furthermore, while there are plenty of examples both 

in my own data and the literature where one test or test modality shows results that another one 

doesn’t, it also seems unlikely to find conflicting overgeneralization results in the same 

experiment. In practice, it may be unwieldy to conduct four separate tests after training, as this 

experiment did, especially when e.g. working with very young participants. Thus, if the main 

interest is finding overgeneralization errors, a production test would be the most likely to do so 

(Schwab et al., 2018). Whereas I was skeptical after my literature review, I now think that in 

certain cases, building theories and drawing conclusions from (over)generalization results in one 

modality seems warranted.  

However, I would still argue that in general it is important to take modality into account. 

In my own experiment, since I contrasted comprehension and production modality in training, 

the more convincing result to show that comprehension participants make more 
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overgeneralization errors than production participants is the one from the comprehension test. 

Similarly, if a theory speaks particularly to comprehension mechanisms, like pre-emption as a 

way to retreat from overgeneralization errors (Goldberg, 2016; Tachihara & Goldberg, 2019), 

comprehension results are more convincing than production results, and if production is invoked 

in explanations, the relationship between comprehension and production during learning should 

be made more explicitly clear. Thus, the only situation in which building theories and drawing 

conclusions from one modality is warranted, is when that theory explicitly only involves that 

modality.  

Vocabulary learning 

Interestingly, I found that comprehension-trained participants outperformed production-

trained participants on stem learning in this experiment. In prior experiments, we had trained 

participants to ceiling on vocabulary, and found no such differences. At first glance, the 

improved stem learning may seem contradictory to results in the memory learning literature, 

where retrieval-based learning has been shown to increase vocabulary learning compared to 

recognition practice (Karpicke & Roediger, 2008). However, the recognition-based control tasks 

used in retrieval-based learning experiments aren’t typically balanced for task demands. In our 

experiment, comprehension training specifically also included making active, task-relevant 

choices. Thus, this discrepancy with retrieval-based learning results is reminiscent of how 

Second Language Acquisition experiments have found benefits for comprehension training, in 

experiments where meaningful comprehension tasks are contrasted with unbalanced production 

tasks that don’t encourage in-depth grammatical processing. Similarly, in this case, recognition 

control conditions in retrieval-based learning experiments don’t encourage in-depth memory 

processing and thus are found to be less effective for learning. In the only outright vocabulary 
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learning experiment that I myself have run (without grammatical regularities present), which 

used the same balanced production and comprehension training tasks, we found no condition 

differences in vocabulary learning (Hopman & Zettersten, 2018, and unpublished follow-up 

results). However, that experiment was designed to answer a research question about category 

learning, and yielded ceiling results for vocabulary learning. In order to understand the 

vocabulary findings in the present study better, it would be interesting to similarly conduct a 

vocabulary learning study with balanced comprehension and production training tasks, that 

doesn’t train vocabulary to ceiling. That way, condition differences might become visible. Before 

running the present study, I would have predicted better vocabulary learning for production-

trained participants in such a study, but I am now wondering whether comprehension-trained 

participants might actually be better at vocabulary learning.  

The results of the experiment presented in this dissertation lend themselves to another 

thought-provoking interpretation. At least with the learning procedure used in this study, 

comprehension and production practice seem to differentially impact how learners process novel 

lexical items. Production-trained participants generalized the grammatical regularities better to 

these novel lexical items, whereas comprehension-trained participants learned the vocabulary 

(the stems) better. I view this as parallel to a category learning finding discussed in my literature 

review. When participants are asked to explain out loud during learning why exemplars belong to 

a category, this improves their ability to learn patterns, but hinders their ability to learn unique 

features of exemplars (Williams et al., 2013). Thus, production and production-like tasks may 

generally encourage and improve regularity learning, but may hinder item learning compared to 

comprehension and comprehension-like tasks, at least when the two modalities are contrasted in 

balanced ways.  
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Serial order and non-adjacent dependencies 

In the error monitoring test, instead of evidence of overgeneralizations, I found a serial 

order result. Participants in both learning conditions were better at catching errors that involved 

small neighborhood morphemes following large neighborhood morphemes than the other way 

around. This could indicate more predictive processing for large than small neighborhood 

morphemes. After a large neighborhood morpheme, participants expected other large 

neighborhood morphemes, whereas participants’ expectations may not have been as strong after 

small neighborhood morphemes. Generally, we know that learners are sensitive to serial order 

patterns like these (e.g. Aslin & Newport, 2012), and it stands to reason that these expectations 

are sharper for the more common large neighborhood. 

Unexpectedly, participants in both learning conditions were better at catching wrong 

determiner errors for unfamiliar than for familiar aliens. At first glance, this is weird: why would 

participants ever do better on phrases containing novel than trained items? Admittedly, I am not 

sure why this effect appeared in my data, and before drawing strong conclusions from this effect 

it would be important to replicate it under other circumstances, e.g. by running a well-powered 

in-person version of this experiment. However, in the interest of future research and sparking 

ideas, I will speculate here on what may have caused this unexpected benefit on unfamiliar alien 

wrong determiner errors.  

It is possible to perform perfectly on the error monitoring test in our experiment by 

simply knowing the four determiner and suffix pairs (one for each of the four neighborhood by 

plurality combinations). We know from previous research that adults can learn this type of non-

adjacent (or AxB) dependency, and that variability in the intermediate word helps learning 

(Gómez, 2002; Onnis et al., 2004; Romberg & Saffran, 2013). Interestingly, in our data 
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participants were better at catching these non-adjacent AxB errors for unfamiliar middle ‘x’ 

elements particularly when the errors occured on the determiner, the ‘A’. Conversely, when the 

non-adjacent AxB error occurs on the suffix, the ‘B’, participants were better at catching the 

errors with familiar middle ‘x’ elements. Thus, there is a serial order effect present in our non-

adjacent dependency error detection. If the error occurred on the A element, the following 

familiar middle ‘x’ element seems to have distracted learners from the AxB regularity. If the 

error occured on the B element following a familiar middle ‘x’ element, participants were better 

at catching the error. I don’t know of any similar results in other experiments concerning non-

adjacent AxB learning. However, given that variability during learning is helpful in picking up 

on non-adjacent AxB dependencies, I speculate that unfamiliar middle ‘x’ elements could have 

allowed learners in my experiment to better focus on the non-adjacent AxB dependency.   

Implications for theories 

Looking back to my literature review, there are some areas and debates where my 

findings have ramifications. In the past tense debate, I see my results showing the impact that 

learning (and testing) modality can have on generalization, as fitting in with single-mechanism, 

connectionist views. Specifically, there is an implemented computational model that can simulate 

several different production and comprehension tasks (Woollams et al., 2009). Woollams and her 

co-authors did not explicitly test generalization, nor did they implement production versus 

comprehension as a training contrast, and it is thus an empirical question whether their model 

would show the production benefits that my data show. However, they did explicitly construct 

their model to be able to handle different naturalistic verb inflection tasks, and because of this, it 

is conceivable to test my findings. Interestingly, before that model was published, Pinker (2006, 

pp. 224) criticized single mechanism theories for being able to handle only production but not 
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comprehension of inflected forms. However, I have not been able to find any references to task 

modality in dual-mechanism, words and rules accounts (e.g. Pinker, 2006). However, if such an 

account were to want to explain production’s role during learning and generalization, it would 

first have to come up with a model that implements both, or it would at least have to specify the 

role of modality explicitly. 

Unfortunately, this lack of specificity with regards to production’s role during learning is 

reflective of a broader criticism of the first language acquisition literature, as the following quote 

illustrates: 

In current theories of first language acquisition, children’s productions are of interest 

primarily as evidence of what children know and not as a potential contributor to the 

development of language. Depending on the theoretical approach, language development 

is held to be the result of different contributions from innate structure, analytic abilities, 

and information provided in the speech children hear (Hoff, 2015). There is no theoretical 

claim that output does not matter; rather, it is just not given much attention as a 

potentially relevant factor. (Ribot et al., 2018, p. 929). 

This lack of interest in language production as affecting learning is also evident in 

reviews on statistical learning. Aslin & Newport (2012) don’t mention task modality, but 

implicitly seem to only focus on input and input processing, even though, like me, they define 

rule learning (a skill often assessed in production-like tasks) as the abilitiy to apply rules to novel 

instances, and argue that rule learning is an outcome of statistical learning mechanisms in the 

right contexts. I agree with Frost, Armstrong and Christiansen’s (2019) remark that statistical 

learning research “often [is] too vague and imprecise regarding actual representations, processing 

mechanisms, and learning outcomes” (p. 1147). Those authors explicitly criticize a ‘unitarian’ 
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view of statistical learning, and state that “a good SL [Statistical Learning] theory is one which 

considers and focuses on the interactions of the organism with the environment” (p. 1139), and 

contrast this with a view of statistical learning in which the learner is a passive absorber of 

environmental distributions. It is striking then that in this review, the ‘pluralistic’ approach that 

the authors argue for is specified mainly as needing to take into account different input 

modalities and domains in which statistical learning has been researched (learning about e.g. 

faces, tones, syllables, shapes). My results also speak to the nature of regularity learning in 

general and generalization specifically. To the extent that my data show modality differences in 

learning and generalization, it is not enough for theories of regularity learning and generalization 

to remain modality-agnostic. Neither comprehension/input/perception-only, nor modality-

agnostic views on generalizaiton can explain why production training would improve 

generalization compared to comprehension training.  

MacDonald’s (2013) Production-Distribution-Comprehension framework provides a 

compatible account for the important role that production plays at a larger scale. Production-

pressures, like serial order and hierarchical processing during utterance planning, influence what 

people say. These utterances, shaped by individual, in-the-moment production pressures, when 

zoomed out together form language distributions. It is these distributions than comprehenders 

then pick up on. The review article quoted earlier also notes the dearth of mechanistic 

explanations of statistical learning phenomena (Frost, Armstrong & Christiansen, 2019, 

pp.1147). While I agree with that observation, I think a fruitful path to attaining a mechanistic 

view and more specific, testable theories needs to incorporate task modality more broadly, and 

language production more specifically. Language production is relatively well-understood at a 

mechanistic level, and scientists have long worked with explicit ideas of representations during 
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different processing stages (e.g. Levelt, 1993). Converesely, these well-specified, mechanistic 

views of language production do not typically encompass ideas about learning and change, but 

rather attempt only to capture the adult ‘final state’. Updating those theories to include learning 

is beyond the scope of this dissertation, but it is clear that cross-polination of these ideas and 

theories would have benefits on both sides. I now turn to an example of how implementing 

specifics about task modality has helped a different area of theorizing become more mechanistic.   

The ‘production effect’ in the memory literature is a well-replicated phenomenon where 

participants remember words in a list they said out loud better than words they heard another 

speaker say out loud. Whereas earlier work on this ‘production effect’ within the memory 

literature seemed focus on the comparative distinctiveness of memory traces, recent work has 

been more explicit about possible mechanisms and how production- or perception-learning 

interacts with the language system in general. Specifically, Kapnoula and Samuel (2022) show 

evidence that production might initially help during early word-learning, and later hinder, 

leading them to posit that production facilitates encoding but interferes with retrieval, whereas 

comprehension/perception might facilitate this integration. There is also evidence that, in novel 

sound learning, immediate production might hinder, interfering with encoding, whereas 

providing participants with a delay between hearing a sound contrast and trying to produce it 

mitigates this interference (Baese-Berk & Samuel, 2022). The generalization that is of interest in 

this line of work is the ability to perceive the studied sound contrast when produced by a novel 

speaker. Thus, while the ‘production effect’ is still often explored as a between-item, within-

participant phenomenon, generalization is of interest in this type of work too.  

There is an important difference between our work and these lines of work, that is 

reflected in both theoretical framing and practical implementation and helps reconcile the 
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different findings. Kapnoula and Samuel (2022) explicitly note retrieval-based learning as a 

nuisance variable, which they control for by having participants in their production conditions 

repeat a word, rather than generate it from memory. This way, they conceive of their task as only 

tapping into phonological short term memory, which is of interest to them (note that the idea of a 

separate phonological short term memory is itself in contrast with theories that view verbal 

working memory as an emergent property of language processing rather than a separate system, 

Schwering & MacDonald, 2020). In contrast, I explicitly theorize that it is the binding during 

utterance planning, when people have to retrieve morphemes and engage in hierarchical and 

serial order processing, that is responsible for the improved learning I see in my production 

condition. Thus, I do not see our results and theirs as contradictory, since we are explicitly 

tapping into broader production-comprehension differences. Interestingly, Baese-Berk and 

Samuel (2022) speculate that production might help with learning rule-based systems, e.g. the 

morphosyntactic learning we’ve tested, but not with less rule-based phenomena like learning to 

perceive a novel sound contrast. This latter supposition is very much in line with our result that, 

on novel lexical items, production participants do better at generalizing a learned regularity, 

whereas comprehension participants seem to do better at learning the new stems, which are less 

rule-based.   

Limitations 

A main difference between the results of this experiment and earlier published worked 

using a similar training paradigm (Hopman & MacDonald, 2018) is the (relative) lack of reaction 

time differences between conditions. Reaction time differences are of interest because fast, 

automatic processing of grammatical features is a difficult-to-achieve halmark of native-like 

language comprehension (Grüter et al., 2012). There are two main differences between the two 
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experiments that may explain the lack of robust reaction time differences in the current study. 

First, the current experiment was run online, with participants completing the experiment in their 

browser in their own space. While I did ask participants before starting the experiment to 

confirm that they were in a quiet space without distractions, many participants indicated that 

there had been some noise and/or distractions in their space in the post-experiment questionnaire. 

These distractions could, and did, lead to noisier data, as evidenced by the amount of unusable 

data I collected. Beyond affecting the overall quality of the data, participants also used different 

operating systems, browsers, hardware and internet connections to complete the experiment, and 

all of these can affect the precision of RT measurements. I also collected a pilot sample of in 

person participants (n = 39), and evaluated those data using the same usability criteria, and found 

data loss more comparable to earlier in person experiments, and markedly lower than for the 

online self-paced data collection done here. The pilot sample was not large enough to definitively 

conclude whether reaction time data would have shown condition effects in person, but the data 

did seem less noisy, even after applying usability criteria.  

The second big difference was the language used in this study compared to the artificial 

language used in Hopman & MacDonald (2018). Specifically, the balance between length and 

complexity of phrases versus the number of stems learned was very different. Our 2018 study 

included only 18 ‘stems’ (vocabulary words of different grammatical categories), but those 18 

different words combined to form 7-word-long full sentences. In contrast, this study had 30 

unique stems, which combined with determiners and suffixes in limited ways to form noun 

phrases. This study employed 30 unique stems so that I could create a familiarity by 

neighborhood interaction and still have good item-level power, but it’s hard to say what effect 

this emphasis on stem-memorizing might have had on reaction times. It is also likely that 
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reaction time differences become larger for longer phrases. For example, in the Hopman & 

MacDonald’s (2018) data, reaction time differences on the forced choice test, consisting of 

mostly 3-5 word phrases, were relatively small, and reaction time differences on the error 

monitoring test, consisting of 7 word full sentences, were larger. It is hard to say whether the 

shorter phrase length in this study otherwise affected results. Furthermore, it is not possible from 

these data alone to disentangle whether differences with earlier results were due to the noisy data 

or due to the shorter phrase length.  

Finally, results from lab-based artificial language learning studies do not always replicate 

with classroom learners of natural languages (Paul & Grüter, 2016; but see Ettlinger, Morgan-

Short, Faretta-Stutenberg & Wong, 2016). In order to address that limitation, Keppenne et al. 

(2021) implemented a version of Hopman & MacDonald’s (2018) training paradigm to teach 

early L2 German learns about German grammatical gender agreement. That study both replicated 

and extended Hopman & MacDonald’s artificial language findings. The production-trained group 

outperformed the comprehension-trained group on comprehension and production tests tapping 

into German grammatical gender agreement. Because of  those findings, I am reasonably 

confident that a similar extension testing generalization of German grammatical gender 

agreement to novel lexical items would yield improved generalization for production-trained 

participants, as well as increased overgeneralization errors for comprehension-trained 

participants. What I am more curious about is what such a natural language version of the current 

experiment would find for vocabulary learning on both trained and novel lexical items. The 

stems in the artificial language used in this dissertation were designed to be pronouncable to the 

English native speaking participants I recruited. It is conceivable that the added complexity of 

learning words with non-native phonotactics would bring out even larger production versus 
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comprehension differences in vocabulary learning than the present study did. If so, results like 

those might dictate which studying strategy is more effective to use depending on whether 

vocabulary or grammar learning is more important in a given classroom or to a given learner.  

Applications and Future Directions 

The data presented here replicate prior research showing that, in a balanced design, 

language production training leads to better grammar learning than language comprehension 

training (Hopman & MacDonald, 2018; Keppenne et al., 2021). This study further extends that 

finding to show that production training also improves generalization of learned grammatical 

regularities to novel lexical items, both when tested in comprehension and in production tests. 

These findings corroborate our conclusions from earlier work that language production practice 

can improve grammar learning and even grammar comprehension, and is thus an effective tool 

for second language grammar instruction. In contrast to my current and earlier results, a meta-

analysis in the field of second language acquisition comparing comprehension- with production-

based instruction concluded that comprehension-based instruction results in better 

comprehension at immediate post-test. A crucial distinction is, again, how exactly 

comprehension and production are implemented. In a review of the second language acquisition 

literature, DeKeyser and Botana (2015) point to the “drill-like nature” (p. 301) of how 

production-based instruction is often implemented in this literature as a reason for 

comprehension-based instruction advantages. They noted that when production-based instruction 

is implemented in a balanced way with comprehension-based instruction, second language 

acquisition studies find an advantage for production-based instruction like I do here.  

Thus, how exactly language production practice is implemented is crucial for second 

language instructors who wish to use language production as an effective tool for grammar 
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teaching. For improving grammar learning, it is key that production-based activities include 

meaning-based, generative production, that involves retrieving vocabulary and grammatical 

morphemes from long-term memory and engaging in the hierarchical and serial order processing 

inherent to utterance planning. While simple drill-like production exercises, like repeating a 

phrase or reading a provided text out loud might benefit other areas of second language 

acquisition like pronunciation, they do not provide the in-depth processing that benefits grammar 

learning. And it is of critical importance that, if second language acquisition researchers wish to 

compare the benefits of production-based versus comprehension-based instruction, they 

implement the two in balanced ways.  

One particular aspect of the way in which I’ve implemented balanced comprehension 

versus production training merits follow-up research: the role of feedback. In order to allow for 

error-driven learning (see e.g. Clark, 2013 for human learning; Rumelhart et al., 1988 for 

computational modeling), and to prevent learners from persisting with their own early errors, 

active learning trials in my studies always include ‘feedback’ in the form of the correct audio-

picture pairing after the learner has made their own match-mismatch judgment or production 

attempt. In (non-language) education contexts, feedback has been shown to improve learning 

from both comprehension-like multiple choice tests (Butler & Roediger, 2008) and production-

like short answer tests (Kang, McDermott & Roediger, 2007). Notably, in the field of second 

language acquisition Swain’s (2005) ‘output hypothesis’ also includes an important role for 

feedback and a learner’s ability to notice discrepancies between their own (potentially 

ungrammatical) productions and native speakers’ (grammatical) productions. As far as I’m 

aware, the role of feedback hasn’t been directly tested in any experiments comparing the effects 

of balanced production and comprehension training for the purpose of grammar learning. This is 
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an important avenue for future research, because typical classroom situations, with many learners 

and one teacher, cannot always easily incorporate immediate, individual feedback for meaning-

based, generative production tasks in the same way that a computer-based experiment can.  

Another potential application of the results presented in this dissertation to real life 

second language learning situations is in testing and assessment. Based on both my literature 

review and my own data, it is clear that different types of tasks are more or less likely to elicit 

overgeneralization errors. If a teacher wishes to assess early learners’ grasp of grammatical 

regularities, a relatively easy forced choice comprehension or grammaticality judgment task may 

suffice to differentiate students’ mastery of a given regularity. Conversely, if the goal of a test is 

to assess mastery of a second language to the highest standards (e.g. C2 level in the Common 

European Framework of Reference for Languages, see Council of Europe, 2001), production 

tests may be more likely to differentiate highly proficient learners. For example, for English, a 

test in which learners are asked to produce a past tense inflection given a stem can elicit errors 

even in native speakers (Woollams et al., 2009). Finally, standardized language tests like the 

TOEFL iBT, the IELTS and the Duolingo English Test that are used by universities to help 

determine admissions for students from non-English speaking countries typically provide 

learners and institutions with an overall score as well as different sub-scores (e.g. IELTS & 

TOEFL iBT: listening, reading, writing and speaking; Duolingo English Test: literacy, 

comprehension, coversation, production). Presumably, proficiency with grammatical regularities 

is important for each of these sub-areas; I would argue that each of these sub-areas thus needs 

modality/sub-area specific trials testing grammatical regularities. Some of these standardized 

tests now employ computerized adaptive testing, in which item levels adapt to a testee’s accuracy 

on earlier items, thus allowing for more efficient testing (McCarthy et al., 2021). An intriguing 
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possibility might be to not just adapt which items are presented, but also which testing modality 

is chosen.    

Conclusions 

I conducted an experiment to test whether language production training improves 

generalization of learned grammatical regularities compared to language comprehension training. 

I found that yes, language production training improves generalization, and comprehension-

trained participants make more overgeneralization errors than production-trained participants. In 

the existing literature, statistical learning is often approached and written about as an amodal 

phenomenon, which limits my ability to draw conclusions about how my results fit with curent 

theories. I argue here that, since my results show that production and comprehension can 

differently affect learning of regularities, a theory of statistical learning and generalization is not 

complete if it is either modality-agnostic or explicitly comprehension, perception, or input-

focused only. Thus, in a way, my data are a challenge to the field of statistical learning to become 

more specific about modality, mechanisms and representations involved in learning and 

generalization.  

In contrasting production and comprehension tests, I found three patterns of results both 

in the published literature and in my own data: (a) people make more overgeneralization errors 

on production than comprehension tests, but (b) often different comprehension and production 

tests may themselves be differentially likely to elicit overgeneralizations, and (c) results from 

production and comprehension tests do tend to allow for similar conclusions about 

overgeneralization. Thus, while a single elicited production test may be the most likely to show 

overgeneralization errors, it might make more sense to prod overgeneralization in different tests 
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using different modalities. Doing so is particularly important if results are meant to inform 

theories that consider both modalities.   
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Appendix A 

Full set of Language and Visual Stimuli 

Table A1 

All Artificial Language Words 

Determiners Large neighborhood (18) Small neighborhood (12) 

singular plural singular plural 

dap roozok roozool pexesh pexaaf 

jeb monok monool glarmesh glarmaaf 

ked kredok kredool stamesh stamaaf 

lom frusok frusool gupesh gupaaf 

 hullok hullool zimbesh zimbaaf 

 biffok biffool zoutesh zoutaaf 

 pavok pavool pumesh pumaaf 

 teepok teepool mipesh mipaaf 

 wimok wimool kinesh kinaaf 

 foudok foudool heefesh heefaaf 

 chagok chagool buresh buraaf 

 chufok chufool chetesh chetaaf 

 ditok ditool   

 sarbok sarbool   

 plimok plimool   

 naosok naosool   

 zeevok zeevool   

 skunok skunool   

Note. Stems are listed with suffixes for singular on the left and for plural on the right, organized 

by neighborhood.  
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Figure A1 

Overview of all Visual Stimuli 

 

Note. The 18 large neighborhood aliens (depicted on the left) are humanoid: they stand upright 

on two legs and have two arms, giving them a tall appearance. The 12 small neighborhood aliens 

(depicted on the right) are blob-like – while they have faces, they do not have legs or arms and 

thus have a more wide, squat shape. This overview picture of all aliens was shown to participants 

at the start of the study while they listened to a 1:05 minute audio introduction to the purpose of 

the study. 
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Appendix B 

Data Filtering 

Table B1 contains a full overview of all the data I gathered, and which data I did and 

didn’t include in our analyses as reported in the main text. The full process for filtering data is 

described in the text of this appendix. Note that the process of data filtering was somewhat 

iterative, and that a participant I excluded for one reason would often also have been excluded 

for other reasons. Thus, Table B1 only lists the reason I marked when excluding the participant.  

Table B1 

Breakdown of Participant Numbers by Condition and Data Categorization.  

 category reason p c NA total 

unusable 

  

personal 

unfocused browser  20 19 - 39 

ended early 13 15 4 32 

did not try 14 11 - 25 

distracted/interrupted 2 7 5 14 

other (took notes, sick, etc) 6 6 1 13 

total personal 55 58 10 123 

unknown 

(did not finish) 

no server access - - 17 17 

server accessed 32 11 41 84 

total unknown 32 11 58 101 

technical 

experiment crashed 10 5 6 21 

device / screen size 1 - 20 21 

safari 2 3 7 12 

some content didn’t show 21 26 1 48 

total technical 34 34 34 102 

performance 

SC threshold 5 1 - 6 

2+ thresholds 14 15 - 29 

SDT threshold 0 2 - 2 

TC threshold 2 2 - 4 

FC threshold 7 3 - 10 

total performance 28 23 - 51 

total unusable 149 126 102 377 

partially usable 

personal 6 3 - 9 

technical 2 4 - 6 

performance: EM-threshold 7 14 - 21 

total partially usable 15 21 - 36 

fully usable 103 125 - 228 

total provided consent 267 272 102 641 

Preregistered Data Filtering 

Unusable and Partially Usable Data 

If a participant did not access any tests, they were automatically categorized as unusable, 

since there was no test data to analyze. If participants started the tests but did not finish at least 

both the two alternative and four alternative forced choice tests, they were also immediately 

categorized as unusable. This is because I had planned to use data from the four alternative 

forced choice test as a covariate in further analyses.  

If a participant finished both forced choiced tests, but not the error monitoring and 

production tests, I considered their data for the two forced choice tests usable. If participants 
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only finished part of the error monitoring test, I did not consider the error monitoring test data as 

usable. If participants finished the error monitoring test but not the production test, I considered 

their error monitoring data usable, as well as whichever trials of the production test they 

completed. Thus, the only test on which I considered partial data as analyzable was the 

production test. The reason for this is that it was the final test, and so their learning during this 

test (or missing test items) wouldn’t affect further tests. 

Sometimes participants did finish a test (or the whole experiment), but missed certain 

trials during a test. For example, some participants indicated in the post-experiment survey (see 

Appendix C) that during certain trials, an image hadn’t loaded on the server. If a participant 

missed content either during training or either of the two forced choice tests, their data was 

automatically considered unusable. If they missed content during the error monitoring test, their 

data up until that point was considered usable but any later trials were not analyzed (so this could 

lead to analyzing only the first half of a participant’s error monitoring test data).  If they missed 

content during the production test, only those trials they missed were not analyzed.  

Classifying Reasons for Unusable and Partially Usable Data 

Many SONA participants provided consent on Qualtrics and filled out the language 

background survey, but did not finish (or even start) the experiment on the lab server. Whenever 

a participant provided consent but didn’t finish the experiment, I checked the data on the server 

to see if I could deduce a reason for this (e.g. server crash). I also checked to see whether the 

participant had failed to resume the experiment within 5 minutes during scheduled breaks. I also 

checked browser information, in order to see whether the experiment was conducted in a browser 

with known issues playing the experiment (Safari) or on a screen that was too small to properly 

display the experiment (e.g. a smartphone; minimum resolution was 1275 x 680). Finally, if 

available, I consulted the post-experiment qualtrics survey (see Appendix C) to check if 

participants had mentioned problems there, or if they had indicated not trying their best, in which 

case I also excluded their data.  

If I was not able to learn what happened, I followed up with a brief email to ask how 

much time the participant spent (so that I could give them fair credit for the time they spent on 

the experiment) and to ask if there had been any technical difficulty with the experiment.  

Finally, the server also noted when participants unfocused their browser during the 

experiment. If this happened for longer than 10 seconds during experimental content, the data 

were categorized as unusable from that point onward (following the same prior rules about e.g. 

needing to have usable data for both forced choice tests for data to be usable).  

Additional, Post-hoc Filtering 

After filtering and categorizing the data from online participants in these preregistered 

ways, the reaction time data in particular were still really poorly distributed, with a lot of noise 

and reaction times that were very long or very short (e.g. ~100 ms). I also saw people who e.g. 

always pressed one key during the error monitoring test, regardless of the trial. I concluded that 

the online data I had gathered was still too noisy to analyze, and decided to threshold the data in 

several additional ways. 

Accuracy 

The experiment included 18 sound check trials, in which participants heard an English 

word and had to type that word into a box. I automatically marked a participant’s data as 

unusable if they got fewer than 83% (15/18) of these sound check trials correct. If a participant 

had 3 errors, I checked the errors by hand. If 2-3 of these errors were real errors (and not typos), 
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the participant’s data was marked as unusable. This is listed as SC (Sound Check) threshold in 

Table B1.  

In the signal detection analysis of the error monitoring data, besides generating a d’ score, 

I also generate a bias score c. This bias score indicates whether a participant was more likely to 

press one specific button. Based on the distribution of bias scores, 5 participants looked like 

outliers, with c > 0.5 or c < -1.5. I manually looked at the the data of the participants inside the 

boundaries closest to these outliers to see if there was evidence that these non-outliers also 

mainly used one button repeatedly, but this was not the case. This is listed as SDT (Signal 

Detection Theory) threshold in Table B1. 

Reaction Time 

I re-processed reaction time data for each comprehension test (Two alternative forced 

Choice: TC; Four alternative forced Choice FC, Error Monitoring EM). This time, I first put in 

absolute boundaries of 0.3-8s, and marked trials that fell outside of that boundary. Then, I 

calculated for each test a participant’s mean and standard deviation on trials that were left inside 

these boundaries and answered correctly. I marked any trials (both correctly and incorrectly 

answered) with reaction times outside of that boundary. Then, I calculated for each participant 

what percentage of their trials for each test was marked as being outside of boundaries. Based on 

distributions, I noted that most participants contributed at least 75% of trials per test that were 

within these boundaries. Thus, I decided to mark a participant as below threshold on a test if 

<75% of reaction times for that test was outside of these boundaries.  

Performance Thresholding 

To summarize, I had 5 post-hoc performance thresholds: SC & SDT (accuracy based) and 

TC, FC and EM (reaction time based). I first excluded participants who did not meet the sound 

check threshold. Then I excluded participants who failed two or more thresholds. I then excluded 

participants who failed the SDT, TC and FC thresholds. Finally, for participants who only failed 

the EM threshold, I marked their TC and FC data as usable, but their EM and production test 

(because it was afer the EM test) data as unusable, thus making their data partially usable. The 

majority of participants who were in the dataset after excluding participants only for 

preregistered reasons passed all of these thresholds and were categorized as fully usable.  

Note that this reaction time thresholding was separate from the main reaction time 

analyses. Thus, in the main reaction time analyses, I did e.g. include a trial with a 12 s reaction 

time if it is within that participant’s mean + 3SD for correct trials for that test. The reaction time 

thresholds mentioned in this appendix were only used to assess, overall, whether a participant 

provided enough data with ‘reasonable’ reaction times or whether they provided so much data 

outside of reasonable reaction time boundaries that I had good reason to believe they may have 

not fully been paying attention to the experiment.  

Partially Usable Data 

Table B2 lists, for participants with partially usable data for any of the reasons 

mentioned, how much analyzable data for each test I have.  

Table B2 

Breakdown of Participant Numbers by Condition and Which Test Data Were Usable  

what data is usable? p c total 

only TC & FC 12 18 30 

FC, TC & some EM 1 1 2 

FC, TC, EM & some PT 2 2 4 

total 15 21 36 
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Condition Assignments 

Participants were randomly assigned to a condition through the pre-experiment qualtrics 

script, with both conditions equally likely initially. Note that, if a participant did not finish at 

least the first block of training (8 passive trials and 8 active trials), they are listed in Table B1 as 

condition ‘NA’. Many of these participants never accessed the server, and those who did access 

the server may never have seen the 8 active trials at the end of the first block of training. Thus, 

even though the qualtrics survey assigned a condition to these people, I counted them as not 

having had a condition assignment.  

I preregistered that, if I noticed unequal attrition between conditions, I would change 

condition assignments. Based on piloting, I expected to see more attrition in the production 

condition than in the comprehension condition. On November 20th, 2021, when 342 participants 

had signed up, provided consent and their participation deadline on SONA had passed, I assessed 

by-condition attrition and changed condition assignment to be 3:1 production:comprehension 

based on the data in the bottom two rows in Table B3. 

Note that even after that date, participants still had some likelihood of being assigned to 

the comprehension condition, so that I kept sampling both conditions over time. Finally, note that 

I still ended up with more comprehension data (125 fully usable, 21 partially usable) than 

production data (103 fully usable, 15 partially usable). Thus, in order to have ended up with 

balanced data numbers between conditions, I could have set the likelihood differents of 

assignment more in favor of production, or changed the likelihoods earlier in the running 

process. 

Table B3 

Breakdown of Participant Numbers on November 20th, 2021 by Condition and Initial/Final 

Usability  

initial categorization final categorization p c NA total 

usable 

fully usable  63 81 - 144 

partially usable 8 5 - 13 

unusable 17 27 - 44 

total initially usable 88 113 - 201 

unusable 54 30 57 141 

total numbers of participants run by November 20th  142 143 57 342 

Note. Initial categorization was done based on data I had preregistered to access before 

datacollection was done. So, at this point I had only accessed the following reasons a 

participant’s data might be classified as unusable: unknown (ended early, with or without server 

access, without reason given); some technical reasons (experiment crashed, safari, screen 

size/device); some personal reasons (ended early, or, within ‘other’, if a participant had e.g. 

emailed me to let me know they were sick). At that time, the other reasons for classifying data as 

unusable were not accessed yet: all performance exclusion criteria, some technical reasons 

(content missed), and some personal reasons (did not try, unfocused browser, or noted in post-

experiment survey that they were interrupted or distracted, or reasons like taking notes that fell 

under ‘other’).   



 95 

Appendix C 

Pre- and Post-Experiment Surveys 

For all multiple choice questions, answers were scrambled into a random order and no 

responses were required, so participants could skip answering questions if they wanted to. 

Multiple choice answer options are listed alphabetically here inside {curly brackets}, options are 

separated by a semi-colon. When a text box was provided as a general response option this is 

indicated as {text box}, or as a clarification option when certain multiple choice options were 

selected this is indicated as {{text box}}. Information inside [square brackets] pertains to survey 

flow and display logic.  

Pre-Experiment Survey 

Meta-data & informed consent: 

[At the start of the survey, meta-data about browser, operating system and screen 

resolution was automatically detected. If Safari was detected, a message was displayed that 

directed the participant to restart the survey in a different browser if they wanted to participate in 

the experiment. If safari was not detected, my contact information was displayed (in order to be 

able to contact me in case of technical difficulties with the experiment), and on the next page the 

informed consent screen was displayed. Once a participant provided informed consent, the 

following questions were displayed on a new page.] 

Demographic questions: 

1. How old are you.  

{text box} 

2. What is your gender?  

{Man; Other (please list) {{text box}}; Woman; Would rather not say} 

[page break] 

3. Which option(s) best describe your race and/or ethnicity (check all that apply)? 

{American Indian / Native American; Asian; Black / African American; Hispanic / 

Latino; Other (please list) {{text box}}; Pacific Islander; White / Caucasian; Would 

rather not say} 

[page break] 

Language background questions: 

4.  

a. Are you a native English speaker?  

{no; yes} 

b. [only displayed if ‘no’ was selected on 4.a.] 

If not English, what is your native language?  

{text box} 

[page break] 

5.  

a. Did you learn other languages than your native language at home before age 5?  

{no; yes} 

b. [only displayed if ‘no’ was selected on 5.a.] 

What other language did you learn at home before age 5? Are you bilingual?  

{text box} 

[page break] 
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6.  

a. Did you learn any languages later in life? (ex: at school or an after-school 

program)  

{no; yes}  

[if no was selected, participant progressed immediately to 8.] 

b. What is the language you know best besides your native language(s)? (you 

will get asked about other languages you might know later on) 

{text box} 

c. How many years of experience do you have with that language?  

{1-3 years; 3-5 years; 5-up years} 

[page break] 

7. [this question was displayed up to five times in a loop] 

a. Apart from the languages you already mentioned, did you learn any other 

languages later in life? (ex: at school or an after-school program)  

{no; yes} 

[if no was selected, participant progressed immediately to 8.] 

b. What is your [third, fourth, …] language?  

{text box} 

c. How many years of experience do you have with that language?  

{1-3 years; 3-5 years; 5-up years} 

[page break] 

8. This experiment can only be done on a desktop or laptop computer, it will not work 

on phone or tablet screens, since those screens are too small to display the experiment 

properly. Please confirm that you are using a desktop or laptop computer.  

{no, I am using a phone or tablet; yes, I am using a desktop or laptop computer} 

9. This experiment includes sound, and takes concentration. While the experiment can 

be done remotely, we want you to treat it as you would an in-person experiment. That 

means we expect you to be alone, in a quiet room, while doing this experiment. Just 

like for an in-person experiment, your phone should be on silent and not within reach. 

You should not have any background noise on (tv, radio, etc). Please confirm that you 

are alone in a quiet room without distractions.  

{no, I am not alone in a quiet room without distractions; yes, I am alone in a quiet 

room without distractions} 

[If ‘no’ was selected for either 8. or 9., the participant was directed to come back and 

complete the experiment at a later moment, when they had access to a laptop or desktop 

computer in a quiet room without distractions. Participants were offered my contact information 

in case they did not have access to this, so that they could opt to complete the experiment in our 

lab space if they never had access to this, or extend their SONA deadline if they had access but 

not within the deadline they had signed up for. Otherwise, participants were automatically 

redirected to the lab server where the experiment started.] 
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Post-Experiment Survey 

This survey asked, with questions progressing from open to closed, about the regularities 

participants had learned, in order to survey explicit awareness. These data were gathered for the 

benefit of second language acquisition researchers who are interested in questions about explicit 

versus implicit awareness of grammar learning. Since this was a not a research question in this 

study, they were not coded or analyzed. These (anonimized) responses will be made publicily 

available together with language learning data in case SLA researchers wish to further analyze 

them. 

Open questions:  

1. What did you notice about how the language you learned worked?  

{text box} 

[page break] 

2. Wat did you notice about how the aliens looked? 

{text box} 

[page break] 

3. What did you notice about how the language you learned was related to how the 

aliens looked?  

{text box} 

[page break] 

Closed questions: 

4.  

a. Did you notice that there was a difference between singular and plural in the 

language?  

{no; no, I didn’t during the study, but now that you mention it, I think I know 

what the difference was; yes} 

b. [not displayed if ‘no’ was selected for 4.a.] 

What was it you noticed about singular and plural? 

{text box} 

[page break] 

5.  

a. Did you notice that different groups of aliens had different shapes?  

{no; no, I didn’t during the study, but now that you mention it, I think I know 

what the difference was; yes} 

b. [not displayed if ‘no’ was selected for 5.a.] 

What was it you noticed about their shapes? 

{text box} 

[page break] 

6.  

a. Did you notice that the language referred differently to the two different 

groups of aliens with different shapes?  

{no; no, I didn’t during the study, but now that you mention it, I think I know 

what the difference was; yes} 

b. [not displayed if ‘no’ was selected for 6.a.] 

What was it you noticed about how the language differently referred to the 

two differently shaped groups of aliens?  

{text box} 
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[page break] 

Screening questions (to determine if data was valid): 

7. Any technical difficulties during the study?  

{text box} 

8. Did the audio work while you did the experiment for both the English words and the 

new language?  

{text box} 

[page break] 

[The next page showed a debrief of the purpose of the study. After that, there was a page 

with confirmation that the experiment was now complete, data was sent to the server, and my 

contact details if they had any other questions. Below that, two more questions were displayed.]  

9. Did you do your best to actually learn the language in a quiet environment without 

distractions? Note that you wil be automatically redirected to receive credit, and the 

answer you give here will not affect your credit.  

{I did my best and was in a quiet space without distractions; I did my best but there 

were distractions and/or noise in the space I was in; I did not do my best, and there 

were distractions and/or noise in the space I was in; I did not do my best but I was in 

a quiet space without distractions; Other, namely {{text box}}} 

10. Any other information that you want to share that might affect how you did the 

study? E.g. were you not sober, did you cheat by taking notes, were you incredibly 

sleep deprived, anything at all that might affect your learning ability? Note that this 

information is anonymous and will not be linked to your name, SONA ID or other 

identifying information, and will not be shared outside the research team.  

{text box} 
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Appendix D  

Production data processing 

Automated Initial Processing 

Production Attempt -> Parsed Determiner and Noun 

A script first parsed each production attempt (a participant’s typed response for a 

production trial) into two words: a determiner and a noun.  

• If a participants typed two words (word = set of letters, demarcated by whitespace), 

the first word was interpreted as the determiner, and the second word was interpreted 

as the noun.  

• If only a single word was typed, this word was repeated and parsed both as a 

determiner and a noun. This was done because when a participant typed a single 

word, it was sometimes a determiner, and sometimes a noun.  

• If three words were typed, the second and third were pasted together to form a single 

word and were processed together as the noun; this was done because there were 

cases where participants typed a space between the stem and the suffix.  

• Finally, if four or more words were typed, the script scored the utterance as 

unparseable and fully incorrect, and did not further process it.  

Thus, unless an utterance was deemed unparseable, the output of the first parsing step 

was always a determiner and a noun.  

Parsed Noun -> Parsed Stem and Suffix 

The second step of the script parsed the second word into a stem and a suffix. It did so by 

splitting up the noun after the first consonant cluster (1 or more consonants) to follow the first 

vowel cluster (1 or more vowels). All stems in the artificial language took the form ‘consonant 

cluster – vowel cluster – consonant cluster’, and all suffixes took the form ‘vowel cluster – 

consonant cluster’. Thus, all correct artificial language nouns were separated cleanly into the 

stem and the suffix this way. Note that on trials where a participant only typed a stem, this would 

lead to the script concluding that no suffix was present. Thus, after the second step, the noun was 

parsed into a stem (always present) and (where present) a suffix  

Parsed Determiner, Stem and Suffix -> Assigned Artificial Language Morphemes (1) 

The third step of the script attempted to assign each parsed morpheme to an artificial 

language morpheme of the same type (e.g. a parsed determiner could only be assigned an 

artificial language determiner, not an artificial language stem). The script calculated the 

Levenshtein Distance (LD) between the produced morpheme and every legal morpheme of that 

type in the artificial language (4 for determiners & suffixes, and 30 for stems). An LD threshold 

of 4 was set for stems. An LD threshold of 3 was set for determiners and suffixes. Legal 

determiners and suffixes in the artificial language had a maximum of 3 characters, so LD 3 or 

above would mean an attempt either had no characters in common with any legal morpheme of 

that type, or was at least double the length of any legal morpeheme of that type.  

• If no LD was strictly below threshold, the parsed morpheme was scored as incorrect 

and not processed further.  

• If at least one LD was below threshold: 

o If a single artificial language morpheme of that type had the lowest LD, the 

parsed morpheme was assigned as that artificial language morpheme (e.g. 

both ‘kred’ and ‘kret’ were assigned as legal artificial language stem ‘kred’).  
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o If several artificial language morphemes had equal lowest, below-threshold 

LD’s, the parsed morpheme was marked for hand-coding and the parsed 

morpheme and its nearest LD neighbors were written into a separate file.  

At the end of this third step, all morphemes were thus either scored as incorrect (at or 

above threshold), marked as hand-coding needed (equidistant below-threshold LD’s) or assigned 

as a specific attempted morpheme in the artificial language.  

Human Coding 

A total of 243 parsed determiners, 2179 parsed stems and 171 parsed suffixes were 

marked for hand-coding because they had lowest, equidistant, below-threshold LD (equi-LD) to 

several artificial language morphemes of their type. Note that for efficiency reasons production 

data processing was happening in parallel with general data filtering (Appendix B). Thus, the 

numbers in this section are based on both data categorized as usable and some data (later) 

categorized as unusable. Furthermore, even though I analyze only production test data, 

productions from active production training trials were also processed and are included in these 

numbers. Processed active production training data will be made available on OSF for interested 

researchers to further analyze.   

The coders were 4 native English speakers, all of whom were familiarized before coding 

with the experiment reported here and the artificial language used. During coding, coders had 

access to Table A1 with all morphemes in the artificial language used in the experiment written 

out, as well as the sound recordings of the artificial language used in the experiment. Coders 

were simply presented with lists of parsed morphemes, and for each parsed morpheme the equi-

LD artificial language morphemes output by the script. Thus, coders did not have access to 

participant, condition or trial information. Lists were labeled by morpheme type, so coders did 

know whether a morpheme was parsed by the script as a determiner, stem or suffix. The stems 

list was split up into smaller lists. Lists were sent out to the coders until every list had been coded 

by 3 coders.   

Coders were instructed to code each parsed morpheme as either 0 or 1, with 0 indicating 

no further processing was possible (either because the parsed morpheme was a keyslam, an 

English word, not like any of the morphemes in the artificial language, or too ambiguously in 

between two morphemes of the artificial language) 1. If a coder indicated 1, they also indicated 

which artificial language morpheme (or which concatenation of 2 morphemes) they thought the 

parsed morpheme should be assigned to. In most cases, this was an artificial language morpheme 

from the same type as the parsed morpheme. Coders were allowed to assign artificial language 

morphemes as the intended target that weren’t equi-LD or weren’t from the same type as the 

parsed morpheme and thus weren’t listed by the script. This was relevant in several types of 

cases. Sometimes, participants used a determiner as a stem (e.g. ‘dapok’, would lead to the 

parsed stem ‘dap’ which has several equi-LD artificial language stems but is identical to an 

artificial language determiner). Sometimes, participants had missed a consonant due to a typo 

(e.g. ‘chaool’, which would be parsed as a stem without a suffix, but is also a typo of ‘chagool’).  

Coder responses were then compared. If no coders or only a single coder coded a parsed 

morpheme as 1, it was assigned ‘none’. If 2 or 3 coders coded a parsed morpheme as 1, it was 

processed further. If 2 or 3 coders provided the same assigned artificial language morpheme (or 

 

1 Note that initially, coders were given more different categories for the different instances 

mentioned here; however, once I realized all of these would not be processed further and simply marked 

as incorrect, I simplified the categories to make hand-coding easier and faster.    
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concatenation of 2 morphemes), the parsed morpheme was assigned as that artificial language 

morpheme. If all 3 coders listed a different assigned artificial langauge morpheme, the parsed 

morpheme was mapped to ‘none’. Finally, if only 2 coders had coded ‘1’, but they provided 

different assigned artificial language morphemes, the fourth coder (or third2) was invoked as a 

tiebreaker, and definitively assigned the morpheme either to one of the two provided ones or to 

‘none’. Assignment outcomes, split out by coder agreement is listed in Table D1 for parsed 

determiners, in Table D2 for parsed stems and in Table D3 for parsed suffixes. Joint together, all 

of the parsed morphemes were added into a ‘dictionary’ listing the parsed morpheme, morpheme 

type (determiner, stem, suffix), and assigned artificial language morpheme(s) (or, ‘none’).  

Table D1 
Hand-Coding Outcomes for Parsed Determiners 

assignment full agr. majority agr. tiebreaker full disagr. total 

‘none’ 130 82 2 0 214 

A.L. morpheme 3 21 5 - 29 

total 133 103 7 0 243 
Note. A.L.: Artificial Language; agr.: agreement; disagr.: disagreement. 

Table D2 
Hand-Coding Outcomes for Parsed Stems 

assignment full agr. majority agr. tiebreaker full disagr. total 

‘none’ 1082 733 18 6 1839 

A.L. morpheme 47 218 75 - 340 

total 1129 951 93 6 2179 
Note. A.L.: Artificial Language; agr.: agreement; disagr.: disagreement. 

Table D3 
Hand-Coding Outcomes for Parsed Suffixes 

assignment full agr. majority agr. tiebreaker full disagr. total 

‘none’ 71 68 2 1 142 

A.L. morpheme 5 19 5 - 29 

total 76 87 7 1 171 
Note. A.L.: Artificial Language; agr.: agreement; disagr.: disagreement. 

Automated Final Processing 

Parsed, Equi-LD Morphemes -> Assigned Artificial Language Morphemes (2) 

The dictionary mapping parsed morphemes onto either ‘none’ or an assigned artificial 

language morpheme was then integrated into the initial script. Note that, whenever the dictionary 

assigned two morphemes for one parsed morpheme, the two assigned morphemes were always 

 

2 Preference was given to the fourth coder, who had never seen this attempted morpheme yet. 

However, not all coders were available anymore at this stage of coding, so if the fourth coder was not 

available, the third coder (who had initially assigned 0) was assigned as a tiebreaker instead.  
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stem + suffix. The trials where the dictionary assigned two artificial language morphemes for one 

parsed morpheme boiled down to three categories3. 

• The parsed morpheme was a stem, and there was no parsed suffix, in which case the 

two assigned morphemes were simply assigned to the stem and suffix. For example, 

the attempted production ‘jeb bresh’ was parsed by the script into ‘jeb’ (determiner), 

‘bresh’ (stem), ‘’ (suffix). The parsed stem ‘bresh’ was then assigned ‘bur’ (stem), 

‘esh’ (suffix) in the dictionary by the coders. On the second run, the script is able to 

parse and assign this attempted production as ‘jeb’ (determiner), ‘bur’ (stem), ‘esh’ 

(suffix).   

• The parsed morpheme was a stem, and there was also a parsed suffix, in which case 

the stem was assigned to ‘none’. For example, the attempted production ‘jeb breshok’ 

was parsed by the script into ‘jeb’ (determiner), ‘bresh’ (stem), ‘ok’ (suffix). The 

parsed stem ‘bresh’ was then assigned ‘bur’ (stem), ‘esh’ (suffix) in the dictionary by 

the coders. On the second run, the script parses and assigns this attempted production 

as ‘jeb’ (determiner), ‘none’ (stem), ‘ok’ (suffix).  

• The parsed morpheme was a determiner or suffix, in which case that morpheme was 

assigned to ‘none’. For example, the attempted production ‘bresh chagok’ was parsed 

by the script into ‘bresh’ (determiner), ‘chag’ (stem), ‘ok’ (suffix). The parsed 

determiner ‘bresh’ was then assigned ‘bur’ (stem), ‘esh’ (suffix) in the dictionary by 

the coders. On the second run, the script parses and assigns this attempted production 

as ‘none’ (determiner), ‘chag’ (stem), ‘ok’ (suffix).  

 The script was re-run, and now each parsed morpheme was either: 

• scored as ‘incorrect’, if at or above LD threshold, no response, ‘none’, or morpheme 

of the wrong type (e.g. ‘dap’ as a stem) 

• or assigned to an artificial language morpheme of the appropriate category. 

Assigned Artificial Language Morphemes -> Score (Correct/Incorrect) 

If an artificial language morpheme was assigned, it was checked whether this was the 

correct target morpheme to describe the picture shown in that production trial (scored as 

‘correct’) or not (scored as ‘incorrect’).  

Assigned Artificial Language Morphemes -> Grammatical Category 

If an artificial language morpheme was assigned, the script retrieved grammatical 

category information (neighborhood for all morphemes, and plurality for determiners and 

suffixes). This way, I could analyze whether an identifiable but incorrect morpheme crossed 

category boundaries (potential overgeneralizations).    

  

 

3 The third category was easy to code and implemented in the script. Since the first two categories 

only consisted of a total of 35 trials, I chose to assign these by hand instead of implementing the 

described procedure in the script.  
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Appendix E  

Predictions from dissertation proposal 

This section is copied verbatim from the dissertation proposal I submitted to my 

committee in November 2020, with the exception of figure labels. Also note that I refer to 

familiarity (familiar/unfamiliar) as ‘alien type’ (trained/untrained), and to the large neighborhood 

as the ‘big’ neighborhood in this section copied from my dissertation proposal.  

In Hopman & MacDonald (2018), we hypothesize that production training leads to better 

learning of grammatical features than comprehension learning. Specifically, during production 

planning, different features relevant to the to-be-produced utterance are held together in working 

memory, allowing for binding between these features. In that experiment, we only tested 

grammar comprehension of novel combinations of well-trained lexical items. We found that 

production participants performed better on those than comprehension participants, which is in 

line with stronger binding between the grammatical, lexical and visual features (e.g. the specific 

visual features of the scary-looking alien named ‘teep’, the visual features of scary-looking aliens 

in general, the ‘teep’ stem for that alien, and the ‘-us(u)’ suffixes for scary-looking aliens). Note 

that, while I talk about all of these as ‘binding’ to emphasize that they are all happening at the 

same time, they are typically thought of as different types of learning. For example, learning that 

a specific scary-looking alien is part of a category of aliens that share certain features is category 

learning (see e.g. Goldstone et al., 2012 for a review), while learning that a particular lexical 

stem is often followed by one of two suffixes is sequential learning (see e.g. Seidenberg & 

MacDonald, 2018 for a review), and mapping a unique visual stimulus to a lexical stem is word 

learning (see e.g. Meade, 2020 for a review). What is unclear from the Hopman & MacDonald 

experiment is how lexically specific this binding of different types of features is, and whether or 

not it would extend to production training improving the binding between a category of 

grammatical features and a set of visual features, in absence of the specific (lexical) item. This 

empirical question will be answered by the current experiment, but before I dive into two 

diverging sets of predictions for how production training might affect generalization (an 

interaction effect), I will first establish overall predictions independent of any interactions with 

learning condition. 

Based on prior literature, I have the following predictions for the three main independent 

variables (learning condition, neighborhood size, alien type): 

• For the main effect of learning condition, I expect to find that production-trained 

participants score higher overall than comprehension-trained participants 

(Hopman & MacDonald, 2018). 

• For the main effect of neighborhood size, I expect to find that participants score 

higher overall on items testing big neighborhood aliens than items testing small 

neighborhood aliens. While each indivual alien has been seen equally often in 

training, since there are more big neighborhood aliens, that type frequency and 

thus practice with its grammatical elements (determiners and suffixes) is higher, 

which should make it easier to get those items correct on a test (Keuleers et al., 

2007).  

• For the main effect of alien type, I expect to find that participants score higher 

overall on trained aliens than on the much less familiar test-only aliens, simply 

because participants have had less practice with those.  

• For the interaction between neighborhood size and alien type, I expect to find that 

participants have an especially hard time with small neighborhood test-only 
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aliens, because for those aliens, both the category (small neighborhood) and the 

individual items (test-only) are less practiced (Keuleers et al., 2007).  

These four predictions hold under each of the two different scenarios worked out below 

(so they are true in both figures with predictions).  

Why Could Production Training Lead to Better Generalization?  

I hypothesize that production training leads to stronger binding than comprehension 

training between all four elements mentioned earlier (e.g. the specific visual features of the 

scary-looking alien named ‘teep’, the visual features of scary-looking aliens in general, the ‘teep’ 

stem for that alien, and the ‘-us(u)’ suffixes for scary-looking aliens). This leads to the following 

predictions, all of which are graphed together in Figure E1. 

• Specifically, in this hypothesis in the production condition there would be 

stronger binding between on the one hand the visual features of the big 

neighborhood and the suffixes and determiners used to describe them and on the 

other hand the visual features of the small neighborhood and the suffixes and 

determiners used to describe them. This leads to the specific prediction that for 

the two-way interaction between learning condition and alien type, production 

participants outperform comprehension participants on less familiar lexical items 

(test-only aliens). 

• That same strengthened binding for production participants would also improve 

performance on small neighborhood aliens. Since that category of aliens is 

smaller, with a lower type frequency, stronger binding overall in the production 

condition will be especially helpful for the small neighborhood aliens. Thus, I 

predict that for the two-way interaction between learning condition and 

neighborhood size, production participants outperform comprehension 

participants on small neighborhood aliens. 

• Finally, combining the prior two arguments, the stronger binding of category and 

grammatical features in the production condition will be more impactful for the 

less-well-learned small neighborhood, leading to the prediction that for the three-

way interaction between learning condition, neighborhood size and alien type, 

production participants will especially outperform comprehension participants on 

test-only, small neighborhood aliens. 
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Figure E1 
Predicted Outcomes Under My Hypothesis That Production Training Leads to Better Generalization 

 
Why Could Production Training Lead to Worse Generalization? 

However, other predictions are possible. It may be that while production practice helps 

learners on familiar lexical items, it hinders generalization. By the time production participants 

get to the tests, they are much more practiced at producing big neighborhood grammatical 

features (e.g. ‘-ok’, ‘-ool’, and the two big neighborhood determiners) than at producing small 

neighborhood grammatical features. This would place participants in the initial part of the U-

shaped curve for learning lower frequency or irregular forms, where a more regular forms is 

more accessible (e.g. Ramscar & Yarlett, 2007). This asymmetry, where participants are more 

practiced at producing big neighborhood features, might make those grammatical features far 

more easily accessible and recognizable, and thus might prompt production participants to 

generally prefer any response option with big neighborhood features (whether e.g. in their own 

productions or in those features ‘sounding more correct’ in error monitoring trials). While 

participants in both learning conditions have also heard the big neighborhood grammatical 

features more often, just hearing these features in asymmetrical frequencies should create less of 

an over-practiced self-priming type bias than regularly producing those same features (Jacobs et 

al., 2019; Segaert et al., 2013). Thus, while all participants may make overgeneralization errors 

in favor of the big neighborhood (trial types where this is particularly possible were flagged in 

the methods section), in this scenario, production participants may be more likely to make this 

type of error than comprehension participants. This leads to the following predictions, all of 

which are illustrated in Figure E2. 

• If production-training leads participants to generally prefer answers containing 

big-neighborhood features, this would lead to more errors on small neighborhood 

features. Thus, in this scenario one would expect to find a two-way interaction 

between learning condition and neighbood size with production participants 

scoring worse than comprehension participants on small neighborhood aliens. 

• In this scenario, production participants might score better than comprehension 

participants on (over)trained aliens, but they would do relatively worse on 
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unfamiliar aliens, leading to a two-way interaction between learning condition 

and alien type with production participants scoring relatively lower on unfamiliar 

test-only aliens than they did for trained aliens.  

• Finally, in this scenario, one may predict a three-way interaction between learning 

condition, neighborhood size and alien type so that production participants do 

especially poorly on small neighborhoood test-only aliens. Note that in this 

scenario, I have graphed the prediction that production participants score below 

chance on small, test-only aliens. This behavior, of being systematically more 

likely to overgeneralize than get the correct form, is not unheard of in experiments 

with real language learners (e.g.Table 1; Kuczaj, 1977). 

Figure E2 
Predictions Under the Alternative Hypothesis That Production Training Impairs Generalization 

 

Note. Green double arrows indicate differences with predictions under my main hypothesis (see Figure 

E1). 

Test Modality 

 The two prediction graphs presented here are not for any specific test, these are 

my general predictions. The three different tests (forced choice, error monitoring and production) 

are interesting for different reasons. One possible outcome could be that the hardest test 

(production) shows chance or uninterpretable performance on harder aspects of the language and 

interesting results on easier aspects on the language that may show ceiling effects in the easier 

comprehension tests. Note that this is in line with the prediction I have based on my literature 

review that generally, the production test should show more (over)generalization errors than the 

two comprehension tests. I am hesitant to make more fine-grained predictions for the difference 

in generalization accuracy between the production- and comprehension tests. If I do find 

qualitative differences in the production test generalization results, it might be challenging to 

tease apart whether those different results are due to simply the increased difficulty of the 

production test itself, or whether they are due to the production modality of the test. In fact, this 
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might be why it was fairly hard to interpret test modality results from prior language learning 

studies that included both comprehension and production tests. The one more specific prediction 

I’m comfortable making with respect to test type is an interaction between training type and test 

type, so that each group should be (relatively) better on the test type that corresponds to their 

training type. Note that this does not mean I expect comprehension participants to do better than 

production participants on the comprehension tests; I just expect comprehension participants to 

be outperformed more by the production participants on the production test than the 

comprehension tests. Finally, the forced choice test, which I expect to be the easiest test, is 

important to include in order to establish that participants in both conditions did learn both the 

trained lexical items and the grammatical regularities above chance.  
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Appendix F 

As predicted preregistration 

This preregistration was uploaded on OSF.io on November 29, 2021 using the as-

predicted format. I have copied it here verbatim, with the following exceptions. I have added 

several headings to make the structure of the preregistration clearer. I have added (sic) where I 

accidentally wrote ‘three’ instead of ‘two’ dependent variables for comprehension tests. I have 

formatted example productions and how the algorithm would parse them in a table. Also note 

that I refer to familiarity (familiar/unfamiliar) as ‘subneighborhood’ (trained/untrained), and to 

the large neighborhood as the ‘big’ neighborhood in this preregistration.  

Data collection 

Have any data been collected for this study already? Note: 'Yes' is a discouraged answer 

for this preregistration form. 

It's complicated. We have already collected some data but explain in Question 8 [‘Other’ 

heading in this appendix] why readers may consider this a valid pre-registration nevertheless.  

Hypothesis 

Does the benefit we found for production training compared to comprehension training in 

earlier studies for learning grammatical features of a new language extend to novel (untrained) 

words? We hypothesize that production practice (with an artificial language introducing (trained) 

words and a novel grammatical regularity not found in English) leads to more accurate 

generalization to novel (untrained, introduced at test) words of the newly learned grammatical 

regularities than comprehension practice does. Below are the more specific 

predictions/hypotheses, copied from EH's dissertation proposal:  

• Specifically, in this hypothesis in the production condition there would be stronger binding 

between on the one hand the visual features of the big neighborhood and the suffixes and 

determiners used to describe them and on the other hand the visual features of the small 

neighborhood and the suffixes and determiners used to describe them. This leads to the 

specific prediction that for the two-way interaction between learning condition and sub 

neighborhood (trained vs untrained), production participants outperform comprehension 

participants on less familiar lexical items (untrained aliens). 

• That same strengthened binding for production participants would also improve performance 

on small neighborhood aliens. Since that category of aliens is smaller, with a lower type 

frequency, stronger binding overall in the production condition will be especially helpful for 

the small neighborhood aliens. Thus, I predict that for the two-way interaction between 

learning condition and neighborhood size, production participants outperform comprehension 

participants on small neighborhood aliens. 

• Finally, combining the prior two arguments, the stronger binding of category and 

grammatical features in the production condition will be more impactful for the less-well-

learned small neighborhood, leading to the prediction that for the three-way interaction 

between learning condition, neighborhood size and subneighborhood (trained/untrained), 

production participants will especially outperform comprehension participants on untrained, 

small neighborhood aliens. 

Dependent variable 

There will be four tests after training. The three comprehension tests (2AFC, 4AFC, EM) 

all measure the same three (sic) DV's: 

• accuracy (whether a participant gets each item correct or incorrect) 
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• Reaction Time (RT). RT's will be adjusted by itemtype to only start at the start of the word 

that first allows participants to get the correct response. For example, if a phrase consists of 

Determiner Noun-with-Suffix, and the correct answer is identified by the Noun-with-Suffix, 

then the reaction time counter will start at 0 at the exact start of the Noun-with-Suffix. Note 

that this leads to the possibility of negative reaction times if a participant makes a choice 

before the critical part of the phrase is played auditorily.  

Comprehension tests 

2 Alternative Forced Choice Test (2AFC). This will test each of the untrained aliens 

twice, once in a way that probes grammatical number, once in a way that probes grammatical 

neighborhood. For both of these itemtypes, the critical word is the determiner, so no RT 

adjustments will be made (it will be measured from the start of the audio).  

4 Alternative Forced Choice Test (4AFC). This will test each of the 30 aliens (both 

trained & untrained) twice, once in a way that probes for stem meaning (picture-stem 

assignment) and once in a way that probes for grammatical understanding. For the stem meaning 

trials, the critical word is the Noun-with-Suffix, so the RT will be measured from the start of that 

word. For the grammatical understanding trials, the critical word is the determiner, so the RT will 

not be adjusted (it will be measured from the start of the audio).  

Error Monitoring test (EM). this test will contain grammatically correct sentences as 

well as sentences with three different types of errors. Aliens from the three subneighborhoods 

consisting of 6 aliens (small-trained, small-untrained, big-untrained) will occur in each 4 item 

types (gram. correct, error type 1 - determiner plurality error, error type 2 - determiner 

neighborhood error, error type 3 - suffix neighborhood error). In order to keep trial number as 

low as possible while keeping maximal power, for the big-trained subneighborhood, which 

consists of 12 aliens, a balanced set of 40 trials will be included in this test. This set will contain 

18 error trials (6 of each type), the same number as each of the other subneighborhoods. Then, 

this set will contain 22 gram. correct trials (each other subneighborhood only contains 6 gram. 

correct trials) in order to get the total number of gram. correct trials to an acceptably high level. 

These 22 & 18 trials will all be balanced as well as possible between the 12 aliens, so that each 

alien occurs at least 3 times (some do occur 4 times) and so that errors are as well spread 

between these aliens as possible.  

For error types 1 & 2, the determiner is the critical word, so no RT adjustments will be 

made for those itemtypes (it will be measured from the start of the audio). For error type 3, the 

Noun-with-Suffix is the critical word, so RT's for this itemtype will be measured from the start of 

that word. For grammatically correct items, the Noun-with-Suffix is also the critical word, since 

a participant has to wait to hear both words before they can know whether the full phrase is 

correct, so RT's for this itemtype will be measured from the start of that word. 

Covariate. We will use participants' average accuracy on 4AFC noun items as a covariate 

in all other analyses (following Hopman & MacDonald, 2018). So e.g. if a participant gets 30/30 

correct, the covariate score for this participant will be 1, if a participant gets 15/30 correct, their 

covariate score will be 0.5, and if a participant gets 0/30 correct, their covariate score will be 0.  

Production test 

For the production test, the main dependent variable will be accuracy of attempted 

productions (as a binary 1/0 DV), and we will also analyze the types of errors people make. 

Here's how the productions will be processed/scored. 

Parsing. The target utterance always consists of 3 parts: determiner stem-suffix. We want 

to score how well a participant did on all of those 3 parts for each typed response compared to 
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the target response. However, in order to score the 3 parts, we first need to parse attempted 

responses.  

Note that participants were instructed to always attempt to write any production they 

could come up with in the artificial language (even if it was wrong), and that if they knew a word 

should go there in the artificial language but couldn't think of any word, they could type the word 

'something'. Thus, the word 'something' is processed slightly differently in the algorithm. We 

created an algorithm to code and score the attempted productions. Table F1 shows example 

parsings.  

• if attempted production consists of one string:  

a. copy this one string into det & word2 position, then pass on to next 

step  

• three strings:  

b. concatenate 2+3 into word2, then pass on to next step 

• two strings: 1st string = det, 2nd string = noun+ suffix 

c. IF first part is the word ‘something’, e.g. ‘somethingaaf’ will be split 

into something (stem) + aaf (suffix)  

d. ELSE split 2nd string after first vowel cluster + consonant cluster: first 

part is stem, rest is suffix 

• 4+ strings: throw away (score all 3 morphemes as wrong) e.g NULL NULL NULL  

Table F1 
Example Production Attempts and Algorithm Parsings into Determiner, Stem and Ending 

production attempt parsed determiner parsed stem parsed ending 

lom lom lom NULL 

thebok thebok theb ok 

lom eb lom eb NULL 

lom thebok lom theb ok 

blablabla thebokoloko blablabla theb okoloko 

something thebok something theb ok 

lom somethingok lom something ok 

lom thebsomething lom theb something 

something somethingsomething something something something 

the aerlkinrg the aerlk inrg 

lom theb ok lom theb ok 

the pink flamingo the pinkfl amingo 

the crazy pink flamingo NULL NULL NULL 

Mapping parsed elements onto the artificial language. The three parsed elements from 

the attempted production (determiner, stem, ending) are compared to the target utterance.  

a) Initially, we will run an algorithm using Levenshtein Distance (LD): 

• map elements user typed to closest element of correct category in 

language 

• or, if closest LD is equal for multiple existing elements: unmappable 

[written off to separate file for human inspection] 

• or, if LD to all possible morphemes of the correct category in the language 

is higher than a threshold: code as NULL 
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Threshold for an element to be marked as NULL:  

• determiners: LD > 2 for LD(attempted det, existing determiner) for all 

four existing determiners in the language 

• stems:  LD > 3 for LD(attempted stem, existing stem) for all thirty 

existing stems in the language 

• endings: LD > 2 for LD(attempted ending, existing ending) for all four 

existing endings in the language 

b) for the unmappable elements (so LD below threshold but equal to several existing 

elements): These unmappable elements will be independently coded by two native 

English speaking Research Assistants (RAs) familiar with both the spelling and the 

way the artificial language sounds. The RAs will each get a simple file with a column 

of attempted productions that the algorithm couldn't code because one of the parsed 

elements had equal LD to multiple existing elements in that position. They will not 

have access to any other information (e.g. participant identifiers, target response, etc). 

For each element, they will list which existing element of the artificial language they 

think the participant meant. Responses from both RA's will then be compared. If both 

RA's list the same target element, the response will be coded as that element. If the 

RA's list different elements, the response will be coded as NULL.  

Scoring. Once the parsed attempted productions are mapped onto either NULL or 

existing elements of the artificial language, they will be scored. Correct elements will be scored 

as 1 and incorrect (or NULL) elements will be scored as 0. The utterance as a whole will be 

scored as 1 if all three elements score a 1, or as 0 if one or more of the three elements was not 

scored as a 1.  

Error Analysis. For cases where the attempted production was mappable (whether by the 

LD algorithm or by RA agreement) but scored as 0 (e.g. a participant wrote 'lom thebool' (an 

existing utterance in the artificial language) when the target utterance was 'lom thebok', we will 

classify which category the incorrect element belonged to and compare that to the target element. 

For determiners and suffixes, this means categorizing them as singular/plural and big/small 

neighborhood. For stems, this means categorizing them as big/small neighborhood and as 

trained/untrained. 

Conditions 

How many and which conditions will participants be assigned to? 

The experiment has 2 between subjects conditions: comprehension training and 

production training. This determines which type of active training the participant receives. 

Participants will be assigned to conditions randomly by a qualtrics script, with the exception that 

once the total number of desired participants is reached in one condition, all participants will be 

assigned to the other condition so that data collection can be completed as soon as possible. 

While assignment is random (and thus the desired number of participants should be reached 

roughly equally fast in both conditions), it is possible that e.g. attrition is different in different 

condition, or that e.g. a technical error tied to a condition renders some data from one condition 

unusable.  

The experiment has 2 within subjects / between items conditions: 

• neighborhood; The artificial language has different determiners and suffixes for the two 

neighborhoods of aliens. The 'big' neighborhood consists of 18 aliens (12 trained, 6 

untrained) and the small neighborhood consists of 12 aliens (6 trained, 6 untrained). Thus, in 

training participants see twice as many 'big' aliens, with their determiner-suffix combinations, 
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than 'small' aliens (while seeing each individual trained alien exactly equally often). There is 

a visual category distinction between the two neighborhoods, as well as the artificial 

language differences: 'big' neighborhood aliens have arms and legs (well, 4 limbs, they are 

aliens so not all have human arms/legs), giving them a somewhat humanoid and tall 

appearance. 'small' neighborhood aliens do not have arms/legs/limbs, giving them a more 

rounded appearance.  

• subneighborhood (trained/untrained). 18 of the aliens appear in training (12 from the big 

neighborhood and 6 from the small neighborhood), these are considered 'trained' aliens. The 

other 12 aliens (6 from the big neighborhood and 6 from the small neighborhood) do not 

appear in training. After training, participants receive passive exposure to these 12 untrained 

aliens and their names, but no active training with their names.  

Note that assignment of aliens to subneighborhoods (trained/untrained) within each 

neighborhood is randomized individually for each participant. So is assignment of stems to aliens 

within each neighborhood.  

Finally, each alien appears in both singular and plural, with different suffixes and 

determiners within each neighborhood marking number. This is both within subjects and within 

items, and both training and testing are completely balanced for singular/plural. 

Analyses 

Comprehension tests 

2AFC. Within the 2AFC test, item types (number and neighborhood) will be analyzed 

together but with a predictor for itemtype. Predictors: Condition*Neighborhood*Itemtype + 

Covariate 

4AFC. Within the 4AFC test, each itemtype will be analyzed independently from the 

other itemtypes, as in Hopman & MacDonald 2018 (Psych Science), because each itemtype 

(grammar and noun trials) tests distinct knowledge. Predictors: 

Condition*Neighborhood*Subneighborhood + Covariate (see below for how accuracy & RT will 

be analyzed for all comprehension tests) 

EM. The error monitoring test as a whole will be analyzed using signal detection theory, 

calculating a d' and bias score for each participant. These overall d' scores will be compared 

between the comprehension and production condition using a simple linear model. Predictors: 

Condition + Covariate. Within the EM test, grammatically correct and grammatically incorrect 

items will be independently analyzed. Predictors:  Condition*Neighborhood*Subneighborhood + 

Covariate 

Overall. Accuracy will be analyzed using generalized mixed effects regression models 

with the maximal random effects structure (see Barr et al. 2013 paper) that will converge. 

Reaction times will be analyzed using linear mixed effects regression models with the maximal 

random effects structure that will converge.  

Production tests 

Scores will be analyzed loosely following Keppenne, Hopman & Jackson (2021)'s 

analysis of production items. We will first analyze stem productions (on all trials) with a 

generalized linear mixed effects regression model. Then, for trials where participants got the 

stem correct, we will analyze determiner and ending accuracy (separately).  

(Over)generalization errors. In addition to the analyses mentioned before, errors will be 

further analyzed in all tests to look at patterns of (over)generalization errors. (e.g. producing big 

neighborhood endings on small neighborhood stems in the production test; choosing a big 

neighborhood picture when a small neighborhood alien's name is played over audio in both 
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forced choice tests; classifying a small neighborhood stem with a big neighborhood ending in 

error monitoring as correct) 

Outliers and Exclusions 

Prescreen allows only participants who meet the following criteria to see the study in the 

psychology extra credit research pool: 

• native language English 

• not colorblind 

• normal or corrected to normal vision 

• normal or corrected to normal hearing 

The experiment itself requires a screen size of at least 1275 x 680, we exclude 

participants whose screens do not meet that size (so e.g. participants can't complete the 

experiment on a mobile phone).  

Before accessing the data, we exclude participants who: 

• completed the study in the Safari browser (audio for the experiment did not work reliably in 

Safari) 

• didn't complete any of the tests at the end of the experiment (sometimes participants would 

end the study early, e.g. due to personal reasons or wifi trouble) 

• mention technological issues that would interfere with the content of the study in the post-

experiment questionnaire (e.g. audio problems, pictures not loading, pictures and audio out of 

sync, etc). 

• mention personal circumstances in post-experiment survey that would interfere with the 

content of the experiment (e.g. not being sober, having cheated on the learning experiment by 

taking notes, etc.) 

 After accessing the data, we also exclude participants who unfocused their browser 

during experimental content for more than 10 seconds (it's ok for participants to unfocus their 

browser during the built in breaks of the experiment) 

For the reaction time analyses, we also exclude trials: 

• that participants answered incorrectly 

• with a negative adjusted RT (explained under 'analyses') 

• with an RT outside of a participant's mean +- 3SD.  

We do specifically analyze 

• training, 2AFC & 4AFC test data for participants who finished those two tests but who ended 

the experiment early during the EM test. 

• training, 2AFC, 4AFC & EM data, as well as all available production test items for 

participants who finished the comprehension tests but who either ended the experiment 

during the production test without finishing it, or for who certain production test items didn't 

load correctly (in that case, those items will be excluded, and only items where the picture 

did load will be analyzed). 

Sample Size 

We will collect participants until the end of fall semester 2021 at UW-Madison for the 

SONA participant pool (extra credit for intro to psychology students). This means we will be 

posting timeslots daily through 5 pm on December 15th, 2021. We will also be emailing 

participants to invite them to do the study. The participant pool has a total of ~1200 participants 

who meet the prerequisites this semester. Our minimum goal is to reach 100 usable participants 

with a complete set of data per condition.  



 114 

Our goal is to run as many participants as possible before that time, with numbers as 

equal as possible in both conditions. Based on piloting, we are foreseeing that attrition rates 

might be higher in one condition (production) than the other condition (comprehension). In order 

to correct for that, once one condition has achieved our minimum of 100 participants, we will 

change the assignment to conditions. Initially that is set as 1:1, but once the goal is reached in 

one condition it might be set to e.g. 3:1, 2:1, etc. in order to also achieve 100 participants in the 

other condition while not only collection data in one condition.  

We arrived at the number of a minimum of 100 participants per condition through 

running power simulations using pilot data. Since there are many different tests in this study (5 

separately analyzed comprehension tests, for both the accuracy and RT DV's), and many 

different predictors (and interactions) of potential interest (7 per test including all interactions), it 

was not computationally feasible for us to run full power simulations (that would entail running 

70 simulations, and some simulations over power curves took ~24 hours to run). The simulations 

we did run showed that effect sizes for different factors in different tests differed from 0.02-1.1. 

So, we generated a power curve for one of the most interesting factors, the three-way interaction 

for accuracy in the 4AFC grammar items, and it showed that 200 participants would be enough 

to achieve >80% power for this effect. We also generated a power curve for another very 

interesting factor, the three way interaction for accuracy in the grammatically incorrect EM 

items, and it reached >80% power around 275 participants.  

Note that these power simulations took into account the higher number of comprehension 

than production participants that completed the pilots. Thus, the 200 participant simulation 

consisted of simulating 122 comprehension participants and 78 production participants, and the 

275 participant simulation consisted of 161 comprehension participants and 96 production 

participants.  

We decided that we would rather have equal numbers of participants in both conditions 

(or: as equal as possible), so we are aiming for a minimum of 100 participants per condition. 

Note that we expect power to be higher with equal numbers of participants in both conditions, so 

that we expect to reach 80% power for both effects of interest for which we generated power 

curves with those numbers. 

Other 

Reason for 'it's complicated' answer about has data been collected: 

This study is EH's dissertation, and so there is a tight deadline for when we need to 

collect this data by. This study took more rounds of piloting than planned until it worked well 

(and until we had determined which browsers it worked well in). Once we had resolved all that, 

it was much later in the semester than we planned to start data collection (late October 2021; 

plan had been to start data collection second half of September 2021), and we knew that it would 

be a stretch goal to reach our desired number of 100+ participants per condition before the end of 

fall semester (December15th  2021). Thus, we decided to immediately start collecting data and 

write the preregistration while we started collecting data.  

Note that while writing this preregistration, we have NOT opened participant's 

experimental data logs (the data we plan to analyze as registered here). We DO have access to 

(and have accessed this for purposes of determining how much extra credit to grant participants) 

the following: 

• pre-experiment qualtrics survey (consent form; assesses language background, browser, 

screen size and randomly assigns condition; timestamp for when study is started; asks 

participants to conduct study alone & in quiet space) 
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• server timestamps for when data for each part of the experiment was sent to the server 

• post-experiment qualtrics survey (timestamp for study completion; asks whether participant 

was alone in quiet room & did their best; asks about technological issues, e.g. audio playing 

ok in browser; asks if participants understood what the study was manipulating; provides 

debrief). 

We will also use these available sources to help us determine whether a participant's data 

meets inclusion criteria (native English, tech issues, completed tests) and to keep track of the 

number of participants in each condition that meets inclusion criteria so that, if necessary, we can 

assign more participants to one condition once the minimum of 100 participants is reached in the 

other condition. 
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Appendix G 

Full Regression Analyses 

In model formulas, || indicates that all pairwise covariances between random intercept 

and slopes were set to 0 in order to achieve convergence and non-singularity (Barr et al., 2013). 

In the p value column of results tables, • indicates marginal significance. In all results figures, 

dots are model predictions, with error bars showing 95% Confidence Intervals (CIs).  

Comprehension Tests 

Forced Choice Tests 

4AFC Stem Results. In addition to the signficant main effect for condition and the 

condition:familiarity interaction mentioned in the main text, I found significant main effects on 

accuracy for neighborhood and familiarity. Participants were significantly more accurate on 

stems for large neighborhood than small neighborhood aliens, and were significantly more 

accurate on stems for familiar than unfamiliar aliens (Table G1, Figures G1 & 7A).  

Table G1 

Accuracy Analysis of the 4AFC Stem Trials (depicted in Figures G1 and 7A) 

Correct ~ LearningCondition*Neighborhood*Familiarity + 

(1+Neighborhood:Familiarity||Participant) 

 Coefficient Standard Error z value p value 

Intercept 0.42 0.08 5.48 < 0.001 *** 

Condition -0.43 0.15 -2.86 < 0.01 ** 

Neighborhood -0.47 0.05 -8.68 < 0.001 *** 

Familiarity -0.53 0.05 -9.77 < 0.001 *** 

Condition:Neighborhood -0.11 0.11 -1.04 > 0.1 

Condition:Familiarity -0.25 0.11 -2.37 < 0.05 * 

Neighborhood:Familiarity -0.01 0.11 -0.06 > 0.1 

Three-way Interaction -0.08 0.22 -0.39 > 0.1 

Figure G1 

Model Predictions for the 4AFC Noun Trials Accuracy Analysis (see also Table G1) 
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Reaction Time analyses for these stem trials also showed significant main effects for 

neighborhood and familiarity: participants were not just more accurate but also faster for large 

than small neighborhood aliens and for familiar than unfamiliar aliens (Figure G2, Table G2). 

Table G2 

RT Analysis of the 4AFC Noun Trials (depicted in Figure G2) 

RT ~ LearningCondition*Neighborhood*Familiarity + 

(1+Neighborhood:Familiarity|Participant) + (0+Neighborhood + Familiarity|Participant) 

 Coefficient Standard Error F Error df p value 

Intercept 3.54 0.06 3357 271.2 < 0.001 *** 

Condition 0.10 0.12 0.65 271.2 > 0.1 

Neighborhood 0.15 0.06 6.74 267.0 < 0.001 *** 

Familiarity 0.12 0.06 4.23 265.6 < 0.05 * 

Condition:Neighborhood -0.23 0.12 3.75 267.0 < 0.10 • 

Condition:Familiarity 0.03 0.12 4.28 265.6 > 0.1 

Neighborhood:Familiarity -0.11 0.12 0.80 280.7 > 0.1 

Three-way Interaction -0.11 0.24 0.19 280.7 > 0.1 

Figure G2 

Model Predictions for the 4AFC Noun Trials RT Analysis (see also Table G2) 
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2AFC Results. For the Two Alternative Forced Choice trials, participants were not just 

more accurate (Table G3, Figure 7B), as reported in the main text, but also faster on large than 

small neighborhood aliens (Tables G4, Figure G3). Other than this main effect for neighborhood, 

no predictors reached significance for accuracy or RT.  

Table G3 

Accuracy Analysis of the 2AFC Task (depicted in Figure 7B) 

Correct ~ LearningCondition*Neighborhood + (1+Neighborhood|Participant) 

 Coefficient Standard Error z value p value 

Intercept 1.35 0.08 17.50 < 0.001 *** 

Condition -0.03 0.15 -0.20 > 0.1 

Neighborhood 0.18 0.08 2.36 < 0.05 * 

Condition:Neighborhood -0.03 0.13 -0.26 > 0.1  

Table G4 

RT Analysis of the Two Alternative Forced Choice Test (depicted in Figure G3) 

RT ~ LearningCondition*Neighborhood + (1+Neighborhood|Participant) 

 Coefficient Standard Error F Error df p value 

Intercept 3.36 0.05 4119.75 261.5 < 0.001 *** 

Condition 0.04 0.11 0.15 261.5 > 0.1 

Neighborhood 0.12 0.04 7.82 247.2 < 0.01 ** 

Condition:Neighborhood -0.07 0.08 0.79 247.2 > 0.1  

Figure G3 

Model Predictions for the 2AFC Reaction Time analysis (see also Table G4) 
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In the methods section I indicated that I might be able to see overgeneralization errors on 

the neighborhood trials specifically, if participants chose large neighborhood distractors for small 

neighborhood targets more often than the reverse for these neighborhood trials (see Figure 5B). 

Thus, I conducted a separate regression analysis on the neighborhood trials to check for a 

significant main effect of neighborhood (with higher accuracy on large than small neighborhood 

aliens), which would indicate overgeneralization. However, I found no significant effects here for 

any predictor (Table G5).  

Thus, while the 2AFC test did establish that participants in both conditions were 

significantly better than chance at applying the learned grammatical regularities to novel lexical 

items (significant intercept for accuracy), this test does not seem sensitive to condition 

differences. These may be ceiling results, since the 2AFC accuracy (M = 0.75) was higher than 

the mean of any other test assessing grammar comprehension in this experiment (4AFC grammar 

trials M = 0.62; EM grammatical error trials M = 0.49). In fact, even the numerically lowest cell 

mean in 2AFC (production participants on small neighborhood aliens: M = 0.74) was higher than 

the highest cell means in both the 4AFC grammar trials (comprehension participants on the large 

neighborhood familiar aliens: M = 0.68) and the EM tests (production participants on suffix 

neighborhood errors for large neighborhood familiar aliens: M = 0.68). 

When I initially designed this experiment, it did not include the 4 blocks of passive trials 

to introduce the unfamiliar (then called test-only) aliens. While the two alternative forced choice 

results in that version were more interesting and showed potential condition differences, pilot 

testing showed that error monitoring and even 4AFC grammar tests had at or below chance 

performance. Production test performance as well as post-experiment debriefs showed that it was 

virtually impossible for participants to complete the production trial. Pilot participants expressed 

frustration about having to produce items they had not learned, and indicated that this frustration 

affected even performance on items they had learned (familiar aliens). Including the 4 blocks of 

passive trials showed an immediate improvement in piloting results for the 4AFC, EM and PT. I 

did not realize at the time that this would also push 2AFC performance to ceiling.    

Table G5 

Accuracy Analysis of the 2AFC Neighborhood Items (Second Round) 

Correct ~ LearningCondition*Neighborhood + (1|Participant) 

 Coefficient Standard Error z value p value 

Intercept 1.41 0.09 16.49 < 0.001 *** 

Condition -0.08 0.17 -0.49 > 0.1 

Neighborhood 0.12 0.09 1.36 > 0.1 

Condition:Neighborhood -0.14 0.18 -0.77 > 0.1 
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4AFC Grammar results. In addition to the effects mentioned in the main text, I found a 

significant main effect of Familiarity on accuracy. Participants were more accurate on familiar 

than unfamiliar aliens (Table G6, Figure G4). This effect was in the expected direction, it makes 

sense that participants are more accurate on trained, familiar aliens than untrained, unfamiliar 

aliens.  

Table G6 

Accuracy Analysis of the 4AFC Grammar Trials (depicted in Figures 7B and G4) 

Correct ~ LearningCondition*Neighborhood*Familiarity + (1+Neighborhood + 

Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept 0.69 0.09 8.00 < 0.001 *** 

Condition 0.04 0.17 0.26 > 0.1 

Neighborhood -0.37 0.07 -5.31 < 0.001 *** 

Familiarity -0.35 0.06 -5.59 < 0.001 *** 

Condition:Neighborhood 0.29 0.13 2.22 < 0.05 * 

Condition:Familiarity 0.03 0.12 0.26 > 0.1 

Neighborhood:Familiarity 0.20 0.11 1.77 < 0.1 • 

Three-way Interaction -0.12 0.22 -0.56 > 0.1 

Figure G4 
Model Predictions for the 4AFC Grammar Trials Accuracy Analysis (see also Table G6) 
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In addition to the main effect for neighborhood on accuracy mentioned in the main text, 

participants are also significantly faster on trials with large than small neighborhood aliens 

(Table G7, Figure G5). This effect was in the expected direction, it makes sense that participants 

are both faster and more accurate on the more common large than the small neighborhood aliens. 

Participants are thus overall better at grammar understanding on large than small neighborhood 

aliens.  

For both accuracy and RT, there was also a marginal neighborhood by familiarity 

interaction. In both cases, the neighborhood effects were smaller for for unfamiliar than familiar 

aliens. I did not predict or expect this, but it seems reasonable that neighborhood differences in 

grammatical understanding come out more clearly for trained than untrained items.  

Table G7 

RT Analysis of the 4AFC Grammar Trials (depicted in Figure G5) 

RT ~ LearningCondition*Neighborhood*Familiarity + 

(1+Neighborhood:Familiarity|Participant) + (0+Neighborhood + Familiarity|Participant) 

 Coefficient Standard Error F Error df p value 

Intercept 4.08 0.06 5235 261.8 < 0.001 *** 

Condition 0.05 0.11 0.17 261.8 > 0.1 

Neighborhood 0.22 0.05 17.14 241.5 < 0.001 *** 

Familiarity 0.02 0.05 0.18 252.1 > 0.1 

Condition:Neighborhood 0.03 0.11 0.05 241.5 > 0.1 

Condition:Familiarity 0.15 0.10 2.35 252.1 > 0.1 

Neighborhood:Familiarity -0.16 0.09 3.07 236.1 < 0.1 • 

Three-way Interaction 0.27 0.18 2.09 236.1 > 0.1 

Figure G5 

Model Predictions for the 4AFC Grammar Trials RT Analysis (see also Table G7) 
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In the methods section I indicated that I might also be able to see overgeneralization 

errors by looking at which foils participants chose in these trials when they made errors. Of 

course, as explained in the methods section, in these 4AFC trials choosing the correct 

neighborhood and choosing the correct alien are equivalent. In order to analyze this, I coded 

whether participants chose the correct neighborhood (so the correct alien in either plurality) or 

not (the distractor alien in either plurality). Analyzing this, I only found an effect of familiarity 

on likelihood of choosing the correct neighborhood. Participants were better at choosing the 

correct neighborhood for familiar than unfamiliar aliens (Table G8, Figure G6). This effect is 

expected: it stands to reason that it was easier for participants to choose the correct neighborhood 

(or alien) for familiar than unfamiliar aliens. However, I did not find more evidence of 

overgeneralization errors here, since there were no effects of neighborhood.  

Table G8 

Correct Neighborhood Chosen Analysis results for 4AFC Grammar Trials (depicted in Figure 

G6) 

Correct_Neighborhood ~ LearningCondition*Neighborhood*Familiarity + (1+Neighborhood 

+ Familiarity||Participant) 

 Coefficient Standard Error z value p value 

Intercept 1.90 0.08 23.25 < 0.001 *** 

Condition -0.09 0.16 -0.56 > 0.1 

Neighborhood -0.04 0.07 -0.53 > 0.1 

Familiarity -0.64 0.08 -8.04 < 0.001 *** 

Condition:Neighborhood -0.21 0.13 -1.57 > 0.1 

Condition:Familiarity 0.11 0.16 0.72 > 0.1 

Neighborhood:Familiarity 0.01 0.13 0.10 > 0.1 

Three-way Interaction -0.08 0.26 -0.31 > 0.1 

Figure G6 

Model Predictions for 4AFC Grammar Trials Correct Neighborhood Chosen Analysis (Table G8) 
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Error Monitoring Test 

Main analyses. As preregistered, in addition to the overall signal detection theory d’ 

analysis reported in the main text, I analyzed each error type separately.    

Wrong Plurality Determiner Errors (Type 1). In addition to the signficant main effect for 

condition on accuracy mentioned in the main text, participants were significantly more accurate 

and faster at catching these errors on large than small neighborhood aliens (Tables G9-10, 

Figures G6-7). These effects were in the expected direction: catching errors should be easier for 

the large than the small neighborhood.  

Participants were also significantly more accurate and marginally faster at catching these 

wrong plurality determiner errors for unfamiliar than familiar aliens. This is unexpected: I had 

predicted that any type of grammatical error would have been easier to catch on familiar than 

unfamiliar aliens.  

Table G9 

Accuracy Analysis of EM Wrong Plurality Determiner Errors (depicted in Figure G6) 

Correct ~ LearningCondition*Neighborhood*Familiarity + (1+Neighborhood + 

Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept 0.09 0.10 0.91 > 0.1 

Condition 0.54 0.20 2.66 < 0.01 ** 

Neighborhood -0.51 0.10 -5.05 < 0.001 *** 

Familiarity 0.32 0.07 4.72 < 0.001 *** 

Condition:Neighborhood -0.23 0.20 -1.16 > 0.1 

Condition:Familiarity -0.03 0.13 -0.26 > 0.1 

Neighborhood:Familiarity 0.16 0.13 1.22 > 0.1 

Three-way Interaction 0.20 0.25 0.78 > 0.1 

Figure G6 

Model Predictions for the EM Wrong Plurality Determiner Errors Accuracy Analysis (Table G9) 
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Table G10 
RT Analysis of the EM Wrong Plurality Determiner Errors (depicted in Figure G7) 

RT ~ LearningCondition*Neighborhood*Familiarity + (1+Neighborhood|Participant)  

 Coefficient Standard Error F Error df p value 

Intercept 3.50 0.06 3458 224.8 < 0.001 *** 

Condition -0.16 0.12 1.83 224.8 > 0.1 

Neighborhood 0.16 0.06 7.32 184.4 < 0.01 ** 

Familiarity -0.09 0.05 3.28 2439.1 < 0.1 • 

Condition:Neighborhood 0.01 0.12 0.00 184.4 > 0.1 

Condition:Familiarity -0.02 0.10 0.05 2439.1 > 0.1 

Neighborhood:Familiarity -0.08 0.10 0.55 2439.1 > 0.1 

Three-way Interaction 0.19 0.21 0.85 2439.1 > 0.1 

Figure G7 
Model Predictions for the EM Wrong Plurality Determiner Errors RT Analysis (see also Table G10) 
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Wrong Neighborhood Determiner Errors (Type 2). Production participants were not just 

significantly more accurate but also marginally faster at detecting these errors than 

comprehension participants (Table G12, Figure G9). This corroborates that production 

participants were all around better at catching determiner neighborhood errors than 

comprehension participants.  

Participants were also significantly more accurate at catching these errors for small than 

large neighborhood aliens (Table G11, Figure G8). This is unexpected: I had predicted any type 

of grammatical error to be easier to catch on large than small neighborhood aliens.  

 Furthermore, participants were also significantly faster and significantly more accurate at 

catching these wrong neighborhood determiner errors for unfamiliar than familiar aliens. This is 

unexpected: I had predicted that any type of grammatical error would have been easier to catch 

on familiar than unfamiliar aliens. 

Table G11 

Accuracy Analysis of EM Wrong Neighborhood Determiner Errors (depicted in Figure G8) 

Correct ~ LearningCondition*Neighborhood*Familiarity + (1+Familiarity|Participant) + 

(1+Neighborhood + Neighborhood:Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept -0.22 0.10 -2.39 < 0.05 * 

Condition 0.80 0.19 4.22 < 0.001 *** 

Neighborhood 0.34 0.09 3.90 < 0.001 *** 

Familiarity 0.20 0.07 2.86 < 0.01 ** 

Condition:Neighborhood -0.14 0.18 -0.77 > 0.1 

Condition:Familiarity 0.06 0.14 0.42 > 0.1 

Neighborhood:Familiarity 0.05 0.13 0.37 > 0.1 

Three-way Interaction 0.31 0.26 1.18 > 0.1 

Figure G8 

Model Predictions for the EM Wrong Neighborhood Determiner Accuracy Analysis (Table G11) 
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Table G12 

RT Analysis of EM Wrong Neighborhood Determiner Errors (depicted in Figure G9) 

RT ~ LearningCondition*Neighborhood*Familiarity + (0+Familiarity|Participant) + 

(1+Neighborhood:Familiarity|Participant)  

 Coefficient Standard Error F Error df p value 

Intercept 3.37 0.06 3170 219.3 < 0.001 *** 

Condition -0.23 0.12 3.80 219.3 < 0.1 • 

Neighborhood -0.02 0.06 0.16 2204.8 > 0.1 

Familiarity -0.13 0.06 4.52 170.9 < 0.05 * 

Condition:Neighborhood -0.03 0.12 0.05 2204.8 > 0.1 

Condition:Familiarity 0.05 0.12 0.14 170.9 > 0.1 

Neighborhood:Familiarity 0.02 0.13 0.01 183.6 > 0.1 

Three-way Interaction 0.29 0.27 1.13 183.6 > 0.1 

Figure G9 

Model Predictions for the EM Wrong Neighborhood Determiner Errors RT Analysis (Table G12)  
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Wrong Neighborhood Suffix Errors (Type 3). In addition to the signficant main effect 

for Condition on accuracy mentioned in the main text, participants were significantly more 

accurate at catching these errors on large than small neighborhood aliens (Tables G13, Figure 

G10). This effect was in the expected direction: catching errors should be easier for the large 

than the small neighborhood. 

Participants were also more accurate at catching these errors for familiar than unfamiliar 

aliens. This effect was in the expected direction: catching errors should be easier for the familiar 

than for unfamiliar aliens. 

Furthermore, there was a significant condition by familiarity interaction for these wrong 

neighborhood suffix errors. The condition difference was larger for familiar than unfamiliar 

aliens. I did not predict or expect this, but it seems reasonable that condition differences in 

grammatical understanding come out more clearly for trained than untrained items. 

Table G13 

Accuracy Analysis of EM Wrong Neighborhood Suffix Errors (depicted in Figure G10) 

Correct ~ LearningCondition*Neighborhood*Familiarity + (1+Familiarity|Participant) + 

(1+Neighborhood + Neighborhood:Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept 0.26 0.08 3.15 < 0.01 ** 

Condition 0.67 0.17 4.00 < 0.001 *** 

Neighborhood -0.51 0.08 -6.39 < 0.001 *** 

Familiarity -0.29 0.07 -4.07 < 0.001 *** 

Condition:Neighborhood -0.03 0.16 -0.14 > 0.1 

Condition:Familiarity -0.32 0.14 -2.30 < 0.05 * 

Neighborhood:Familiarity 0.08 0.13 0.66 > 0.1 

Three-way Interaction -0.22 0.25 -0.86 > 0.1 

Figure G10 

Model Predictions for the EM Wrong Neighborhood Suffix Errors Accuracy Analysis (Table G13) 
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There were no significant or marginal effects in the RT analysis for these wrong 

neighborhood suffix errors (Table G14, Figure G11).  

Table G14 

RT Analysis of EM Wrong Neighborhood Suffix Errors (depicted in Figure G11) 

RT ~ LearningCondition*Neighborhood*Familiarity + (1+Neighborhood + 

Familiarity|Participant)  

 Coefficient Standard Error F Error df p value 

Intercept 2.73 0.06 2389 224.3 < 0.001 *** 

Condition -0.17 0.11 2.19 224.3 > 0.1 

Neighborhood 0.08 0.06 2.13 192.2 > 0.1 

Familiarity -0.01 0.06 0.02 203.9 > 0.1 

Condition:Neighborhood -0.04 0.11 0.12 192.2 > 0.1 

Condition:Familiarity -0.03 0.12 0.08 203.9 > 0.1 

Neighborhood:Familiarity -0.06 0.10 0.33 2648.8 > 0.1 

Three-way Interaction 0.05 0.20 0.06 2648.8 > 0.1 

Figure G11 

Model Predictions for the EM Wrong Neighborhood Suffix RT Analysis (see also Table G14) 
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Post-hoc exploratory analyses.  There were three unexpected main effects: (1) for 

wrong neighborhood determiner errors (type 2), participants were more accurate on small than 

large neighborhood aliens and (2-3) for both types of wrong determiner errors (types 1 & 2, 

wrong plurality determiner and wrong neighborhood determiner), participants were more 

accurate on unfamiliar than familiar aliens. In both cases, the error type(s) of interest were 

compared with wrong neighborhood suffix trials (type 3). For (1) this comparison to only error 

type 3 made sense as a comparison because both error types 2 and 3 are neighborhood errors, 

with the only difference the morpheme that contained the error. For (2-3), both error types 1 and 

2 were determiner errors, and thus they were compared to error type 3, with a different error 

location, namely the suffix. Since these were post-hoc exploratory follow-up analyses, only these 

specific effects of interest were interpreted, although full glmer’s are reported in Tables A.20-21.  

In order to analyze (1), the novel predictor error location was created: error type 2, wrong 

neighborhood determiner errors, were coded as -0.5, and error type 3, wrong neighborhood suffix 

errors, as 0.5. Data for those two error types were then analyzed together (Table G15).   

In addition to the stem neighborhood by error location interaction of interest that is 

mentioned in the main text, there is also an error location by familiarity interaction, caused by 

the unexpected finding that participants are more accurate at catching wrong neighborhood 

determiner errors for unfamiliar than familiar aliens (3). Since, as mentioned at the start of this 

section a similar main effect of familiarity in favor of unfamiliar aliens was also present for the 

wrong plurality determiner errors (2), a separate follow-up analysis with all three error types 

together was conducted. 

Table G15 

Neighborhood Error Serial Order Analysis (depicted in Figure 9) 

Correct ~ LearningCondition*Neighborhood*Familiarity*Location + 

(1+Familiarity|Participant) + (1+Neighborhood:Location + Neighborhood:Familiarity + 

Familiarity*Location |Participant) 

 Coefficient Standard Error z value p value 

Intercept 0.05 0.08 0.54 > 0.1 

Condition 0.76 0.17 4.51 < 0.001 *** 

Neighborhood -0.08 0.05 -1.71 < 0.1 • 

Familiarity -0.04 0.05 -0.73 > 0.1 

Error Location 0.50 0.08 6.34 < 0.001 *** 

Condition:Neighborhood -0.06 0.09 -0.66 > 0.1 

Condition:Familiarity -0.10 0.11 -0.94 > 0.1 

Neighborhood:Familiarity 0.08 0.10 0.82 > 0.1 

Condition:Location -0.14 0.16 -0.86 > 0.1 

Neighborhood:Location -0.84 0.14 -5.86 < 0.001 *** 

Familiarity:Location -0.47 0.10 -4.83 < 0.001 *** 

Cond.:Neigh.:Fam. 0.08 0.19 0.40 > 0.1 

Cond.:Neigh.:Loc. 0.09 0.29 0.31 > 0.1 

Cond.:Fam.:Loc. -0.38 0.19 -1.96 < 0.1 • 

Neigh.:Fam.:Loc. 0.03 0.18 0.16 > 0.1 

4-way interaction -0.53 0.36 -1.50 > 0.1 

Note. Cond.: Condition, Neigh.: Neighborhood, Fam.:Familiarity, Location & Loc.:Error 

Location 
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In order to analyze a factor with three levels (the three error types), two orthogonal 

contrasts were created. The first contrast was coded to capture error location (wrong plurality 

determiner: 0.33, wrong neighborhood determiner: 0.33, wrong neighborhood suffix: -0.67). The 

second contrast, error type, captured whether there was a difference between the two different 

types of determiner errors (wrong plurality determiner: -0.5, wrong neighborhood determiner: 

0.5, wrong neighborhood suffix: 0). In a contrast analysis, a pattern is considered confirmed if 

the contrast of interest (in this case, the error location by familiarity interaction) is significant, 

and the remaining orthogonal contrast is not. To control for type I error rate in this exploratory, 

multiple contrast analysis, p-values for the contrast of interest were Scheffé-corrected (error 

location (c1) / error Type (c2) by familiarity interactions). There was indeed a significant error 

location by familiarity interaction, and no error type by familiarity interaction (Table G16, Figure 

10). Thus, the contrast analysis confirmed the pattern I had spotted. 

Table G16 

Error Location by Familiarity Contrast Analysis (depicted in Figure 10) 

Correct ~ LearningCondition*Familiarity*(Location+Type) + (1+Familiarity + Location + 

Type|Participant)  

 Coeff. Std. Error z value p value p Scheffé 

Intercept 0.07 0.08 0.93 > 0.1 - 

Condition 0.67 0.15 4.42 < 0.001 *** - 

Familiarity 0.08 0.04 1.70 < 0.1 • - 

ErrorLocation (contrast 1) -0.35 0.07 -5.36 < 0.001 *** - 

ErrorType (contrast 2) -0.25 0.11 -2.34 < 0.05 - 

Condition:Familiarity -0.05 0.09 -0.52 > 0.1 - 

Condition:Location (c1) -0.02 0.13 -0.16 > 0.1 - 

Condition:Type (c2) 0.26 0.22 1.23 > 0.1 - 

Familiarity:Location (c1) 0.49 0.08 6.48 < 0.001 *** < 0.001 *** 

Familiarity:Type (c2) -0.13 0.09 -1.44 > 0.1 > 0.1 

Cond.:Fam.:Location (c1) 0.32 0.15 2.11 < 0.001 *** - 

Cond.:Fam.:Type (c2) 0.16 0.18 0.88 > 0.1 - 

Note. Coeff.: Coefficient; Std. Error: Standard Error; Cond.: Condition, Fam.:Familiarity, 

Location & Loc.:Error Location (contrast 1), Type: Error Type (contrast 2). Neighborhood was 

left out of this analysis to ensure convergence, because it was not a relevant predictor in this 

analysis. 
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Production Test 

Overall Accuracy  

Overall accuracy was analyzed separately for each morpheme (Tables G17-19). Besides 

the effects reported in the main text, there was a significant main effect of neighborhood for all 

three morphemes, so that participants more accurately produced determiners, stems and suffixes 

for large than the small neighborhood aliens. This effect was in the expected direction: it makes 

sense that it was easier to correctly produce morphemes describing large neighborhood than 

small neighborhood aliens.  

There was also a significant main effect of familiarity for all three morphemes, so that 

participants more accurately produced determiners, stems and suffixes for familiar than for 

unfamiliar aliens. This effect was also in the expected direction: it makes sense that it was easier 

to correctly produce morphemes describing familiar than unfamiliar aliens.  

Finally, for suffixes only, there was a significant neighborhood by familiarity interaction, 

so that the main effect for neighborhood was smaller for unfamiliar than familiar aliens. I did not 

predict or expect this, but it seems reasonable that neighborhood differences in producing 

suffixes come out more clearly for trained than untrained items. Note that this effect is parallel to 

neighborhood by familiarity interactions for the 4AFC grammar trials.  

Table G17 

Accuracy Analysis of PT Determiner Productions (depicted in Figure 11A) 

Correct ~ Condition*Neighborhood*Familiarity + (1+ Neighborhood*Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept -0.35 0.13 -2.76 < 0.01 ** 

Condition 1.33 0.25 5.25 < 0.001 *** 

Neighborhood -0.76 0.13 -5.94 < 0.001 *** 

Familiarity -0.36 0.05 -6.60 < 0.001 *** 

Condition:Neighborhood 0.37 0.26 1.42 > 0.1 

Condition:Familiarity -0.12 0.11 -1.06 > 0.1 

Neighborhood:Familiarity 0.03 0.10 0.26 > 0.1 

Three-way Interaction 0.20 0.21 0.95 > 0.1 

Table G18 

Accuracy Analysis of PT Stem Productions (depicted in Figure 11B) 

Correct ~ Condition*Neighborhood*Familiarity + (1+ Neighborhood*Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept -1.52 0.10 -14.67 < 0.001 *** 

Condition 0.05 0.21 0.24 > 0.1 

Neighborhood -0.50 0.08 -6.58 < 0.001 *** 

Familiarity -1.23 0.10 -11.96 < 0.001 *** 

Condition:Neighborhood -0.27 0.13 -2.03 < 0.05 * 

Condition:Familiarity -0.69 0.19 -3.59 < 0.001 *** 

Neighborhood:Familiarity 0.01 0.15 0.06 > 0.1 

Three-way Interaction -0.51 0.26 -1.92 < 0.1 • 
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Table G19 

Accuracy Analysis of PT Suffix Productions (depicted in Figure 11C) 

Correct ~ Condition*Neighborhood*Familiarity + (1+ Neighborhood + 

Neighborhood:Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept -0.62 0.10 -6.21 < 0.001 *** 

Condition 0.53 0.20 2.65 < 0.01 ** 

Neighborhood -1.13 0.09 -13.20 < 0.001 *** 

Familiarity -0.66 0.05 -14.00 < 0.001 *** 

Condition:Neighborhood 0.27 0.17 1.56 > 0.1 

Condition:Familiarity -0.12 0.09 -1.25 > 0.1 

Neighborhood:Familiarity -0.20 0.10 -2.11 < 0.05 

Three-way Interaction -0.03 0.19 -0.18 > 0.1 

Overgeneralization 

Model for both neighborhoods.  For all three morphemes, there was a main effect of 

neighborhood, with the proportion of neighborhood errors always larger for small than for large 

neighborhood aliens (Tables G20-22; Figure G12). These neighborhood errors on small aliens 

are of particular interest, because they constitute overgeneralizations. Thus, as expected, the 

production test elicited many overgeneralization errors.  

There was also a main effect of familiarity for all three morphemes, with the proportion 

of neighborhood errors always larger for familiar than for unfamiliar aliens. This was as 

expected: participants made more overgeneralization errors for unfamiliar than for familiar 

aliens.  

Then, there was a significant main effect of condition for determiners and suffixes (both 

grammatical morphemes), but not for stems. Comprehension participants made significantly 

more neighborhood errors than production participants on determiners and suffixes. Thus, 

comprehension participants made more overgeneralization errors on grammatical morphemes 

than production participants.  

For determiners, there was a significant condition by familiarity interaction. The 

condition difference was larger for familiar than unfamiliar aliens.   

Table G20 

Analysis of Proportion Neighborhood Errors for Identifiable Determiner Productions (Figure 

G12A) 

Neighborhood Error ~ Condition*Neighborhood*Familiarity + (1+ 

Neighborhood*Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept -1.46 0.11 -13.87 < 0.001 *** 

Condition -0.78 0.21 -3.74 < 0.001 *** 

Neighborhood 1.07 0.21 5.22 < 0.001 *** 

Familiarity 0.60 0.08 7.35 < 0.001 *** 

Condition:Neighborhood -0.47 0.40 -1.16 > 0.1 

Condition:Familiarity 0.37 0.15 2.57 < 0.05 * 

Neighborhood:Familiarity -0.21 0.16 -1.34 > 0.1 

Three-way Interaction -0.02 0.29 -0.08 > 0.1 
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Table G21 

Analysis of Proportion Neighborhood Errors for Identifiable Stem Productions (Figure G12B) 

Neighborhood Error ~ Condition*Neighborhood*Familiarity + (1+ 

Neighborhood*Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept -1.26 0.07 -18.93 < 0.001 *** 

Condition -0.06 0.13 -0.42 > 0.1 

Neighborhood 0.81 0.11 7.74 < 0.001 *** 

Familiarity 0.55 0.09 6.51 < 0.001 *** 

Condition:Neighborhood -0.13 0.20 -0.66 > 0.1 

Condition:Familiarity 0.22 0.16 1.39 > 0.1 

Neighborhood:Familiarity -0.09 0.16 -0.55 > 0.1 

Three-way Interaction 0.35 0.31 1.15 > 0.1 

Table G22 

Analysis of Proportion Neighborhood Errors for Identifiable Suffix Productions (Figure G12C) 

Neighborhood Error ~ Condition*Neighborhood*Familiarity + (1+ 

Neighborhood*Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept -1.63 0.09 -17.46 < 0.001 *** 

Condition -0.39 0.18 -2.18 < 0.05 * 

Neighborhood 2.27 0.18 12.42 < 0.001 *** 

Familiarity 0.89 0.10 8.62 < 0.001 *** 

Condition:Neighborhood -0.31 0.34 -0.90 > 0.1 

Condition:Familiarity 0.11 0.17 0.66 > 0.1 

Neighborhood:Familiarity 0.05 0.21 0.21 > 0.1 

Three-way Interaction -0.33 0.34 -0.99 > 0.1 

Figure G12 

Overgeneralizations in the Production Test..  
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Simple Effects for Small Neighborhood.  As explained in the main text, neighborhood 

errors were of particular interest when they occured for the small neighborhood, since those 

neighborhood errors constituted overgeneralizations. Thus, the same model presented in Tables 

A.26-28 was rerun centered on the small neighborhood (small_neighborhood: large = -1, small = 

0). Mathematically, this means that for the other predictors, instead of providing the overall 

condition (or familiarity, etc.) effect, the predictor now provided the estimate for condition (or 

familiarity, etc.) specifically as it held for the small neighborhood aliens. Thus, an effect of 

condition (or familiarity, etc.) in this analysis held specificially for the overgeneralization errors 

of interest (Tables A.29-31, Figure 11). Note that results for the four predictors that include 

small_neighborhood (small_neighborhood, condition:small_neighborhood, 

xmall_neighborhood:familiarity and the three-way interaction) were identical to those printed in 

Tables G20-G22 and were thus left out of Tables G23-G25. 

Table G23 

Analysis of Proportion Neighborhood Errors for Identifiable Determiner Productions Centered 

on Small Neighborhood (Figure 12A) 

Neighborhood Error ~ Condition*SmallNeighborhood*Familiarity + (1+ 

SmallNeighborhood*Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept -0.92 0.15 -6.27 < 0.001 *** 

Condition -1.01 0.29 -3.45 < 0.001 *** 

Familiarity 0.49 0.11 4.61 < 0.001 *** 

Condition:Familiarity 0.36 0.20 1.79 < 0.1 • 

Table G24 

Analysis of Proportion Neighborhood Errors for Identifiable Stem Productions Centered on 

Small Neighborhood (Figure 12B) 

Neighborhood Error ~ Condition*SmallNeighborhood*Familiarity + (1+ 

SmallNeighborhood*Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept -0.85 0.10 -8.87 < 0.001 *** 

Condition -0.12 0.19 -0.64 > 0.1 

Familiarity 0.51 0.12 4.14 < 0.001 *** 

Condition:Familiarity 0.40 0.24 1.67 < 0.1 • 

Table G25  

Analysis of Proportion Neighborhood Errors for Identifiable Suffix Productions Centered on 

Small Neighborhood (Figure 12C) 

Neighborhood Error ~ Condition*SmallNeighborhood*Familiarity + (1+ 

SmallNeighborhood*Familiarity|Participant) 

 Coefficient Standard Error z value p value 

Intercept -0.50 0.14 -3.65 < 0.001 *** 

Condition -0.54 0.27 -2.00 < 0.05 * 

Familiarity 0.92 0.12 7.76 < 0.001 *** 

Condition:Familiarity -0.06 0.23 -0.25 > 0.1 
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Appendix H 

Dankwoord 

To my first ever research mentor, Dr. Caitlin Fausey. I am lucky that you took a chance 

on a random student emailing you about re-using some stimuli. I would never have even thought 

to apply for PhD programs in the USA (especially not in the Midwest) if it hadn’t been for the 

honors project I got to do at IU-Bloomington as a master’s student. Being mentored by you 

showed me what I wanted (and still want) to be like as a mentor myself. Hearing your voice to 

ask me the first zoom question during my defense was a beautiful full circle moment for me.  

Tiffany and the Seppa family, thank you for helping me get settled in Madison that very 

first year. (Grampa) Dan, your driving lessons will stick with me for a lifetime.  

Teresa, you were my first ever mentee. I remember going to the PIF conference in 

Leuven together, and it’s still surreal to me that you lived in the Netherlands for a year as a 

master’s student. Levi, I doubt that my job interview at Duolingo would’ve gone as well as it did 

without your help practicing live-coding. Miriam, sometimes I worried we are too alike and 

would drive each other crazy with our perfectionism and work ethic, but we made it to 

graduation! Jur, jij bent mijn allernieuwste en allerlaatste mentee, and I absolutely love having 

gotten this opportunity to work together on research. To all the mentees in between, thank you 

for teaching me all you did. Mentoring y’all has been a privilege, and the letters of 

recommendation that Teresa, Jamie, Charles, Emily and Robin wrote meant more than the 

mentoring award itself did.  

Shout-out to Polly, Taryn & Jennifer, for helping me stay sane during graduate school.   

To the department staff, thanks for taking care of everything so that we can focus on 

research. John, thank you for helping me coordinate such a smooth hybrid format dissertation 

defense. It meant the world to me to get to have my friends & family from the Netherlands, as 

well as colleagues spread over the US, attend my dissertation and even ask questions live. Kevin, 

I’m sure you’re happy to see me go ;) of course I’m joking, but wow did we have many 

administrative hiccups with my appointments, visa and benefits over the years. I always felt a lot 

more secure knowing that you had my back!   

Ken, Kristin, Pippa & (little) Olive; Mike, Olive & Lance; Kathy, Denny & Mickey; 

Kathleen, Melissa & Charlie; Emily & Ryder; Ben, Murphy & Sasha; Emily, Turk & Jager; 

Margaret, Izzie & family; Scott, Hippo, Blossom & Lily; Susan & Mindo; thank you all for 

tolerating the buoyant fluffy little ball of anxiety that was an adolescent Vinya. The 7 am 

weekday mornings by the woods were always a bright way to start my day, and particularly 

helped me cope with isolation during the start of the pandemic.  

Snowflower Sangha, thank you for welcoming me and providing me with a spiritual 

home. Amanda, Amy, Beng, Celeste, Curt, Elizabeth, Gloria & Walt, Jon, Karuna & Micha, Leah 

& Zach & Linnea, Lester, Lisa, Mary & David, Nan & Finn, Nancy & Joe, Rosebud, Sarah, 

Sherrie & Doug, Steven, Susan & Jim, Tod, Tom, Tony, and everyone else I’ve interacted with. 

Wishing you all mettā, karuṇā, muditā, upekkhā in abundance.  

Mark, Martin, Matt CB, Arella, Desia, Steve & Cassie, thanks for putting up with me as 

your chattiest office-mate and teaching me all you did in the process, whether it was about 

complicated analyses or about a random English word I couldn’t come up with while writing. 

Y’all encouraged me to have confidence in my growing abilities as a researcher, and to keep 

being my quirky, exuberant self in the process. Alyssa, Anna, Chris, Emily, Gaylen, Jeff, Kim, 

Kushin, Lilia, Matt B, Melissa, Michelle, Misty, Mitch, Odile, Phil, Pierce, Ron, Sarah, Sasha, 

Sean, Viri, my time in the department was brighter because of you all.  
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To all of my friends & family who watched my dissertation defense online, thank you for 

joining! It made me so happy to see all of your names and faces right in front of me as I was 

presenting my thesis.  

Janneke, Suus, Michiel & Astrid, I know I tend to pop in and out, maar als we elkaar 

spreken voelt het als vanouds, and I miss living closer to you all and seeing more of each other.  

Joe, I’m grateful for your co-mentorship during my middle years in grad school. I’ve 

really enjoyed working with you, your ability to think outside the box stands out in particular, as 

well as your ability to make people working in seemingly disparate fields of research into a 

cohesive lab! Our bilingualism and creativity paper is the most efficient division of labor for 

getting a project done and a paper out that I’ve ever gotten to be part of. I’m grateful to you and 

Maryellen both for letting me flexibly move in and out of Joe’s lab as made sense for me, I really 

appreciate that freedom & flexibility to get to do what’s felt right at different times for me and 

my career. 

Steve, having you officiate Jay and my marriage ceremony in our backyard in Madison at 

the start of the pandemic is one of my most special memories as a grad student. I can’t wait for 

your wedding with Courtney, and hope we’ll keep visiting each other as our careers progress.   

Carolina, te extrañaré en Pittsburgh. ¡Y gracias por todo que has hecho por nosotros!  

Maryellen, I remember how star-struck I was when we met at the Valkhof museum in 

Nijmegen at the small comprehension=production workshop and I got to have dinner with you. 

Such a contrast with a recent phonecall where you couldn’t even understand me because I was 

panicking about my dissertation defense potentially needing to be rescheduled. Thank you for 

supporting me through the good times and the bad. I really appreciate your thoughtful guidance, 

and your ability to keep me focused without curbing my enthusiasm. I’ve worked with plenty of 

intelligent people, but your brilliance is unmatched.   

 Maaike2 & Tim. Waar te beginnen? Chocofonduen in de tentamenweek en samen Love 

Story meeblèren, Marieweekenden, studiereizen, de Efteling. Vriendjes zien komen, gaan, en 

blijven. Maaike G, ik weet nog dat je me meenam naar dat scoutingfeestje, en die bbq waar ik de 

enige vegetariër was. Ik heb nog steeds dat jurkje (‘de sok’) in de kast hangen dat wij ooit samen 

in Arnhem kochten. Maaike Z, ‘ik ben niet zo goed in talen leren’ en ‘Elise ‘bitch’ Hopman’; 

glæder mig til at besøge dig og Henrik i Danmark ;). Way to go getting the post-doc grant & 

taking your research career to the next level. Tim, schat, dawno, dawno temu była dziewczyna, 

która chciała się nauczyć języka polskiego, en dat nu voor Duolingo gaat werken. Even after all 

of these years we continue to walk in step, niet alleen onze zelfde propedeuse & bachelor tegelijk 

af, maar zelfs onze verschillende masters & PhD’s tegelijk afgerond. Ik weet nog dat we in 

Portland proostten op het feit dat mijn eerste artikel voor review was geaccepteerd, en van de 

zomer in Pittsburgh kunnen we mooi vieren dat we beiden onze dissertation afgerond hebben.  

Kat, Chels & David, PhDivas, cheerleaders and my closest friends here in Madison. 

David & Kat, we all lost our dads during grad school, and now we’re all graduating during the 

same semester. Chels & David, it means so much to me that I got to show you Nijmegen. Kat & 

Chels, we started together and became friends quickly in our first year. David, your quiet genius 

and grace are qualities I can only ever strive for. Kat, I’ve always looked up to you as a 

researcher and a person, and will probably keep doing so forever. Chels, from nerding out about 

personal finance to teaching me how to put on make-up for a job interview, there’s nothing too 

small or too large for us to share. All of you were there in our backyard when we got married at 

the start of the pandemic, and the kindle you got me that summer was the most meaningful 

present I’ve ever received. I hope these friendships are for life.  



 137 

Kris, Alma & Kaly, I always feel at home with you all. Kris, I’ve known you for more 

than half of my life; wie had kunnen bedenken dat een vriendschap die begon met een paar 

geleende boeken would still be going strong by now? And what a lovely surprise to have you ask 

the final question at my dissertation defense! Alma, mi hermana mexicana, espero que algún día 

vivamos cerca la una de la otra. Kaly, ik word er altijd blij van om jou weer te zien!   

Jill, Jeff, Jordan, Jarad & Lowen, being far away from my own family in the Netherlands 

I feel especially lucky to have loving family on this side of the ocean. Jill, your support and 

wisdom have helped me make this country home. Lowen, I can’t express how special it’s been 

for me to witness your first six months of life, and how excited I am to see you grow up.  

Mamma, Meike, Jannes & Noura, het betekent zò veel voor me dat jullie in levende lijve 

bij mijn verdediging en uitreiking konden zijn (en Mike via Zoom!), en dat we daarna met zijn 

allen naar Zion National Park zijn geweest, de eerste gezinsvakantie in heel veel jaar. Jannes, ik 

kan niet wachten om ook bij jouw verdediging te zijn over een paar jaar. Meike, ik hoop dat we 

na Yosemite en nu Zion nog veel national parks samen gaan verkennen. Mam, we missen pappa 

allemaal nog steeds, en dat maakt me extra dankbaar voor jouw goede gezondheid, en dat jij mijn 

trouwen, mijn promotie en hopelijk nog heel veel andere mijlpalen kan meemaken.  

Jay, Plato & Sophia love you (at least) as much as they do me, which is kind of unfair 

since they’ve known me twice as long, but I guess that’s cats for you. Adopting Vinya was 

probably the scariest thing we ever did together, and her boundless, unconditional love touches 

me (and you, and everyone else who she can reach with her enthusiastic face-licks) daily. When I 

moved here from the Netherlands to get my PhD at UW-Madison I hadn’t really planned to 

permanently immigrate to the USA. I know you likewise hadn’t planned to leave your downtown 

high rise apartment for a house with a yard on the west side, or to leave Madison to move to 

Pittsburgh. Let’s keep changing each other’s plans for a long time to come. 
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